BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 38278052)

  • 1. Stress granule and P-body clearance: Seeking coherence in acts of disappearance.
    Buchan JR
    Semin Cell Dev Biol; 2024; 159-160():10-26. PubMed ID: 38278052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the Ubiquitin System in Stress Granule Metabolism.
    Tolay N; Buchberger A
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition and function of stress granules and P-bodies in plants.
    Kearly A; Nelson ADL; Skirycz A; Chodasiewicz M
    Semin Cell Dev Biol; 2024 Mar; 156():167-175. PubMed ID: 36464613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of RNA helicases in P-bodies and stress granules.
    Hilliker A
    Methods Enzymol; 2012; 511():323-46. PubMed ID: 22713327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resveratrol and related stilbene derivatives induce stress granules with distinct clearance kinetics.
    Amen T; Guihur A; Zelent C; Ursache R; Wilting J; Kaganovich D
    Mol Biol Cell; 2021 Nov; 32(21):ar18. PubMed ID: 34432484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer cell adaptability: turning ribonucleoprotein granules into targets.
    Lavalée M; Curdy N; Laurent C; Fournié JJ; Franchini DM
    Trends Cancer; 2021 Oct; 7(10):902-915. PubMed ID: 34144941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Proteostasis Regulation in the Turnover of Stress Granules.
    Hu R; Qian B; Li A; Fang Y
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation.
    Guillén-Boixet J; Kopach A; Holehouse AS; Wittmann S; Jahnel M; Schlüßler R; Kim K; Trussina IREA; Wang J; Mateju D; Poser I; Maharana S; Ruer-Gruß M; Richter D; Zhang X; Chang YT; Guck J; Honigmann A; Mahamid J; Hyman AA; Pappu RV; Alberti S; Franzmann TM
    Cell; 2020 Apr; 181(2):346-361.e17. PubMed ID: 32302572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA helicase DDX6 and scaffold protein GW182 in P-bodies promote biogenesis of stress granules.
    Majerciak V; Zhou T; Kruhlak MJ; Zheng ZM
    Nucleic Acids Res; 2023 Sep; 51(17):9337-9355. PubMed ID: 37427791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pseudophosphatase MK-STYX inhibits stress granule assembly independently of Ser149 phosphorylation of G3BP-1.
    Barr JE; Munyikwa MR; Frazier EA; Hinton SD
    FEBS J; 2013 Jan; 280(1):273-84. PubMed ID: 23163895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication.
    Lindquist ME; Lifland AW; Utley TJ; Santangelo PJ; Crowe JE
    J Virol; 2010 Dec; 84(23):12274-84. PubMed ID: 20844027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function.
    Buchan JR; Kolaitis RM; Taylor JP; Parker R
    Cell; 2013 Jun; 153(7):1461-74. PubMed ID: 23791177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated multi-omics reveals common properties underlying stress granule and P-body formation.
    Kershaw CJ; Nelson MG; Lui J; Bates CP; Jennings MD; Hubbard SJ; Ashe MP; Grant CM
    RNA Biol; 2021 Nov; 18(sup2):655-673. PubMed ID: 34672913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Ubiquitin in Regulating Stress Granule Dynamics.
    Krause LJ; Herrera MG; Winklhofer KF
    Front Physiol; 2022; 13():910759. PubMed ID: 35694405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules.
    Yang C; Wang Z; Kang Y; Yi Q; Wang T; Bai Y; Liu Y
    Autophagy; 2023 Jul; 19(7):1934-1951. PubMed ID: 36692217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of small molecule inhibitors of G3BP-driven stress granule formation.
    Freibaum BD; Messing J; Nakamura H; Yurtsever U; Wu J; Kim HJ; Hixon J; Lemieux RM; Duffner J; Huynh W; Wong K; White M; Lee C; Meyers RE; Parker R; Taylor JP
    J Cell Biol; 2024 Mar; 223(3):. PubMed ID: 38284934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules.
    Yang P; Mathieu C; Kolaitis RM; Zhang P; Messing J; Yurtsever U; Yang Z; Wu J; Li Y; Pan Q; Yu J; Martin EW; Mittag T; Kim HJ; Taylor JP
    Cell; 2020 Apr; 181(2):325-345.e28. PubMed ID: 32302571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane Atg8ylation, stress granule formation, and MTOR regulation during lysosomal damage.
    Jia J; Wang F; Bhujabal Z; Peters R; Mudd M; Duque T; Allers L; Javed R; Salemi M; Behrends C; Phinney B; Johansen T; Deretic V
    Autophagy; 2023 Jun; 19(6):1893-1895. PubMed ID: 36394332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecular phase separation in stress granule assembly and virus infection.
    Liu Y; Yao Z; Lian G; Yang P
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1099-1118. PubMed ID: 37401177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.