These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38278254)
1. Spatio-temporal feature attribution of European summer wildfires with Explainable Artificial Intelligence (XAI). Li H; Vulova S; Rocha AD; Kleinschmit B Sci Total Environ; 2024 Mar; 916():170330. PubMed ID: 38278254 [TBL] [Abstract][Full Text] [Related]
2. Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe. Cilli R; Elia M; D'Este M; Giannico V; Amoroso N; Lombardi A; Pantaleo E; Monaco A; Sanesi G; Tangaro S; Bellotti R; Lafortezza R Sci Rep; 2022 Sep; 12(1):16349. PubMed ID: 36175583 [TBL] [Abstract][Full Text] [Related]
3. Improving the prediction of wildfire susceptibility on Hawai'i Island, Hawai'i, using explainable hybrid machine learning models. Tran TTK; Janizadeh S; Bateni SM; Jun C; Kim D; Trauernicht C; Rezaie F; Giambelluca TW; Panahi M J Environ Manage; 2024 Feb; 351():119724. PubMed ID: 38061099 [TBL] [Abstract][Full Text] [Related]
4. Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. Abdollahi A; Pradhan B Sci Total Environ; 2023 Jun; 879():163004. PubMed ID: 36965733 [TBL] [Abstract][Full Text] [Related]
5. High-resolution mapping of wildfire drivers in California based on machine learning. Qiu L; Chen J; Fan L; Sun L; Zheng C Sci Total Environ; 2022 Aug; 833():155155. PubMed ID: 35413339 [TBL] [Abstract][Full Text] [Related]
6. A European-scale analysis reveals the complex roles of anthropogenic and climatic factors in driving the initiation of large wildfires. Ochoa C; Bar-Massada A; Chuvieco E Sci Total Environ; 2024 Mar; 917():170443. PubMed ID: 38296061 [TBL] [Abstract][Full Text] [Related]
7. Identifying Key Drivers of Wildfires in the Contiguous US Using Machine Learning and Game Theory Interpretation. Wang SS; Qian Y; Leung LR; Zhang Y Earths Future; 2021 Jun; 9(6):e2020EF001910. PubMed ID: 34222556 [TBL] [Abstract][Full Text] [Related]
8. Biogeographic variability in wildfire severity and post-fire vegetation recovery across the European forests via remote sensing-derived spectral metrics. Nolè A; Rita A; Spatola MF; Borghetti M Sci Total Environ; 2022 Jun; 823():153807. PubMed ID: 35150679 [TBL] [Abstract][Full Text] [Related]
9. A multi-modal wildfire prediction and early-warning system based on a novel machine learning framework. Bhowmik RT; Jung YS; Aguilera JA; Prunicki M; Nadeau K J Environ Manage; 2023 Sep; 341():117908. PubMed ID: 37182403 [TBL] [Abstract][Full Text] [Related]
10. Interpretable and explainable AI (XAI) model for spatial drought prediction. Dikshit A; Pradhan B Sci Total Environ; 2021 Dec; 801():149797. PubMed ID: 34467917 [TBL] [Abstract][Full Text] [Related]
11. Assessment of noise pollution-prone areas using an explainable geospatial artificial intelligence approach. Razavi-Termeh SV; Sadeghi-Niaraki A; Yao XA; Naqvi RA; Choi SM J Environ Manage; 2024 Nov; 370():122361. PubMed ID: 39255573 [TBL] [Abstract][Full Text] [Related]
12. Examining the Relationship between Land Use/Land Cover (LULC) and Land Surface Temperature (LST) Using Explainable Artificial Intelligence (XAI) Models: A Case Study of Seoul, South Korea. Kim M; Kim D; Kim G Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36498000 [TBL] [Abstract][Full Text] [Related]
13. CVD22: Explainable artificial intelligence determination of the relationship of troponin to D-Dimer, mortality, and CK-MB in COVID-19 patients. Kırboğa KK; Küçüksille EU; Naldan ME; Işık M; Gülcü O; Aksakal E Comput Methods Programs Biomed; 2023 May; 233():107492. PubMed ID: 36965300 [TBL] [Abstract][Full Text] [Related]
14. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. Zhang J; Ma X; Zhang J; Sun D; Zhou X; Mi C; Wen H J Environ Manage; 2023 Apr; 332():117357. PubMed ID: 36731409 [TBL] [Abstract][Full Text] [Related]
15. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age. Collins L; Bennett AF; Leonard SWJ; Penman TD Glob Chang Biol; 2019 Nov; 25(11):3829-3843. PubMed ID: 31215102 [TBL] [Abstract][Full Text] [Related]
16. Effects of a large wildfire on vegetation structure in a variable fire mosaic. Foster CN; Barton PS; Robinson NM; MacGregor CI; Lindenmayer DB Ecol Appl; 2017 Dec; 27(8):2369-2381. PubMed ID: 28851094 [TBL] [Abstract][Full Text] [Related]
17. Integrating machine learning for enhanced wildfire severity prediction: A study in the Upper Colorado River basin. Han H; Abitew TA; Bazrkar H; Park S; Jeong J Sci Total Environ; 2024 Nov; 952():175914. PubMed ID: 39222803 [TBL] [Abstract][Full Text] [Related]
18. Explainable Artificial Intelligence to Investigate the Contribution of Design Variables to the Static Characteristics of Bistable Composite Laminates. Saberi S; Nasiri H; Ghorbani O; Friswell MI; Castro SGP Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570085 [TBL] [Abstract][Full Text] [Related]
19. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape. Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636 [TBL] [Abstract][Full Text] [Related]
20. Predictive model of spatial scale of forest fire driving factors: a case study of Yunnan Province, China. Li W; Xu Q; Yi J; Liu J Sci Rep; 2022 Nov; 12(1):19029. PubMed ID: 36348041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]