BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38278772)

  • 1. Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic
    Hahn F; Ferrandez-Montero A; Queri M; Vancaeyzeele C; Plesse C; Agniel R; Leroy-Dudal J
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5613-5626. PubMed ID: 38278772
    [No Abstract]   [Full Text] [Related]  

  • 2. Galactose-functionalized polyHIPE scaffolds for use in routine three dimensional culture of mammalian hepatocytes.
    Hayward AS; Eissa AM; Maltman DJ; Sano N; Przyborski SA; Cameron NR
    Biomacromolecules; 2013 Dec; 14(12):4271-7. PubMed ID: 24180291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering.
    Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acrylic-acid-functionalized PolyHIPE scaffolds for use in 3D cell culture.
    Hayward AS; Sano N; Przyborski SA; Cameron NR
    Macromol Rapid Commun; 2013 Dec; 34(23-24):1844-9. PubMed ID: 24243821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiolene- and Polycaprolactone Methacrylate-Based Polymerized High Internal Phase Emulsion (PolyHIPE) Scaffolds for Tissue Engineering.
    Aldemir Dikici B; Malayeri A; Sherborne C; Dikici S; Paterson T; Dew L; Hatton P; Ortega Asencio I; MacNeil S; Langford C; Cameron NR; Claeyssens F
    Biomacromolecules; 2022 Mar; 23(3):720-730. PubMed ID: 34730348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent Attachment of Fibronectin onto Emulsion-Templated Porous Polymer Scaffolds Enhances Human Endometrial Stromal Cell Adhesion, Infiltration, and Function.
    Richardson SA; Rawlings TM; Muter J; Walker M; Brosens JJ; Cameron NR; Eissa AM
    Macromol Biosci; 2019 Feb; 19(2):e1800351. PubMed ID: 30548765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Differentiation Potential of Primary Human Endometrial Cells Cultured on 3D Scaffolds.
    Eissa AM; Barros FSV; Vrljicak P; Brosens JJ; Cameron NR
    Biomacromolecules; 2018 Aug; 19(8):3343-3350. PubMed ID: 29928802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration.
    Naranda J; Sušec M; Maver U; Gradišnik L; Gorenjak M; Vukasović A; Ivković A; Rupnik MS; Vogrin M; Krajnc P
    Sci Rep; 2016 Jun; 6():28695. PubMed ID: 27340110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.
    Guex AG; Puetzer JL; Armgarth A; Littmann E; Stavrinidou E; Giannelis EP; Malliaras GG; Stevens MM
    Acta Biomater; 2017 Oct; 62():91-101. PubMed ID: 28865991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration.
    Wang S; Guan S; Zhu Z; Li W; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():308-316. PubMed ID: 27987712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and In Vivo Assessment of Oxidatively Responsive PolyHIPE Scaffolds for Use in Diabetic Orthopedic Applications.
    Touchet TJ; Horelica M; Gruenbaum R; Lewy K; Hines E; Stranahan L; Saunders WB; Maitland DJ
    Macromol Biosci; 2024 Mar; 24(3):e2300393. PubMed ID: 37904644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioceramic nanocomposite thiol-acrylate polyHIPE scaffolds for enhanced osteoblastic cell culture in 3D.
    Lee A; Langford CR; Rodriguez-Lorenzo LM; Thissen H; Cameron NR
    Biomater Sci; 2017 Sep; 5(10):2035-2047. PubMed ID: 28726876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex vivo culture of adult CD34
    Severn CE; Eissa AM; Langford CR; Parker A; Walker M; Dobbe JGG; Streekstra GJ; Cameron NR; Toye AM
    Biomaterials; 2019 Dec; 225():119533. PubMed ID: 31610389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering.
    Dominguez-Alfaro A; Alegret N; Arnaiz B; González-Domínguez JM; Martin-Pacheco A; Cossío U; Porcarelli L; Bosi S; Vázquez E; Mecerreyes D; Prato M
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1269-1278. PubMed ID: 33464834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds.
    Samourides A; Browning L; Hearnden V; Chen B
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.
    Wang S; Guan S; Xu J; Li W; Ge D; Sun C; Liu T; Ma X
    Biomater Sci; 2017 Sep; 5(10):2024-2034. PubMed ID: 28894864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conducting Polymer-ECM Scaffolds for Human Neuronal Cell Differentiation.
    Barberio C; Saez J; Withers A; Nair M; Tamagnini F; Owens RM
    Adv Healthc Mater; 2022 Oct; 11(20):e2200941. PubMed ID: 35904257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conductive PEDOT/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells.
    Yang B; Yao F; Ye L; Hao T; Zhang Y; Zhang L; Dong D; Fang W; Wang Y; Zhang X; Wang C; Li J
    Biomater Sci; 2020 Jun; 8(11):3173-3185. PubMed ID: 32367084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.