These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Nano-FTIR spectroscopic identification of prebiotic carbonyl compounds in Dominion Range 08006 carbonaceous chondrite. Yesiltas M; Glotch TD; Sava B Sci Rep; 2021 Jun; 11(1):11656. PubMed ID: 34079034 [TBL] [Abstract][Full Text] [Related]
6. Origin of organic compounds in carbonaceous chondrites. Cronin JR Adv Space Res; 1989; 9(2):59-64. PubMed ID: 11537361 [TBL] [Abstract][Full Text] [Related]
7. Life on Mars: chemical arguments and clues from Martian meteorites. Brack A; Pillinger CT Extremophiles; 1998 Aug; 2(3):313-9. PubMed ID: 9783179 [TBL] [Abstract][Full Text] [Related]
8. Organic matter in extraterrestrial water-bearing salt crystals. Chan QHS; Zolensky ME; Kebukawa Y; Fries M; Ito M; Steele A; Rahman Z; Nakato A; Kilcoyne ALD; Suga H; Takahashi Y; Takeichi Y; Mase K Sci Adv; 2018 Jan; 4(1):eaao3521. PubMed ID: 29349297 [TBL] [Abstract][Full Text] [Related]
9. Carbon isotope composition of individual amino acids in the Murchison meteorite. Engel MH; Macko SA; Silfer JA Nature; 1990 Nov; 348(6296):47-9. PubMed ID: 11536470 [TBL] [Abstract][Full Text] [Related]
10. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Schmitt-Kopplin P; Gabelica Z; Gougeon RD; Fekete A; Kanawati B; Harir M; Gebefuegi I; Eckel G; Hertkorn N Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2763-8. PubMed ID: 20160129 [TBL] [Abstract][Full Text] [Related]
11. Nanoscale infrared imaging analysis of carbonaceous chondrites to understand organic-mineral interactions during aqueous alteration. Kebukawa Y; Kobayashi H; Urayama N; Baden N; Kondo M; Zolensky ME; Kobayashi K Proc Natl Acad Sci U S A; 2019 Jan; 116(3):753-758. PubMed ID: 30602454 [TBL] [Abstract][Full Text] [Related]
12. Organic constituents of carbonaceous chondrites. Briggs MH; Mamikunian G Life Sci Space Res; 1964; 2():57-85. PubMed ID: 11881656 [TBL] [Abstract][Full Text] [Related]
13. Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Shock EL; Schulte MD Nature; 1990 Feb; 343(6260):728-31. PubMed ID: 11536464 [TBL] [Abstract][Full Text] [Related]
14. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Pasek M; Lauretta D Orig Life Evol Biosph; 2008 Feb; 38(1):5-21. PubMed ID: 17846915 [TBL] [Abstract][Full Text] [Related]
15. Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites. Vollmer C; Kepaptsoglou D; Leitner J; Busemann H; Spring NH; Ramasse QM; Hoppe P; Nittler LR Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15338-43. PubMed ID: 25288736 [TBL] [Abstract][Full Text] [Related]
16. Gamma-Ray-Induced Amino Acid Formation in Aqueous Small Bodies in the Early Solar System. Kebukawa Y; Asano S; Tani A; Yoda I; Kobayashi K ACS Cent Sci; 2022 Dec; 8(12):1664-1671. PubMed ID: 36589881 [TBL] [Abstract][Full Text] [Related]
17. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity. Kebukawa Y; Chan QH; Tachibana S; Kobayashi K; Zolensky ME Sci Adv; 2017 Mar; 3(3):e1602093. PubMed ID: 28345041 [TBL] [Abstract][Full Text] [Related]
18. The origin of organic matter in the Martian meteorite ALH84001. Becker L; Popp B; Rust T; Bada JL Adv Space Res; 1999; 24(4):477-88. PubMed ID: 11543335 [TBL] [Abstract][Full Text] [Related]