BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38278805)

  • 1. Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae.
    Cheng L; Zhao S; Li T; Hou S; Luo Z; Xu J; Yu W; Jiang S; Monti M; Schindler D; Zhang W; Hou C; Ma Y; Cai Y; Boeke JD; Dai J
    Nat Commun; 2024 Jan; 15(1):770. PubMed ID: 38278805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes.
    Shen Y; Stracquadanio G; Wang Y; Yang K; Mitchell LA; Xue Y; Cai Y; Chen T; Dymond JS; Kang K; Gong J; Zeng X; Zhang Y; Li Y; Feng Q; Xu X; Wang J; Wang J; Yang H; Boeke JD; Bader JS
    Genome Res; 2016 Jan; 26(1):36-49. PubMed ID: 26566658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCRaMbLE-in: A Fast and Efficient Method to Diversify and Improve the Yields of Heterologous Pathways in Synthetic Yeast.
    Swidah R; Auxillos J; Liu W; Jones S; Chan TF; Dai J; Cai Y
    Methods Mol Biol; 2020; 2205():305-327. PubMed ID: 32809206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts.
    Lindeboom TA; Sanchez Olmos MDC; Schulz K; Brinkmann CK; Ramírez Rojas AA; Hochrein L; Schindler D
    ACS Synth Biol; 2024 Apr; 13(4):1116-1127. PubMed ID: 38597458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterozygous diploid and interspecies SCRaMbLEing.
    Shen MJ; Wu Y; Yang K; Li Y; Xu H; Zhang H; Li BZ; Li X; Xiao WH; Zhou X; Mitchell LA; Bader JS; Yuan Y; Boeke JD
    Nat Commun; 2018 May; 9(1):1934. PubMed ID: 29789590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE.
    Luo Z; Jiang S; Dai J
    Methods Mol Biol; 2021; 2196():153-165. PubMed ID: 32889719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution.
    Chen S; Xie ZX; Yuan YJ
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32188997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and identification of recurrent genomic rearrangements that generate chimeric chromosomes in
    Palacios-Flores K; Castillo A; Uribe C; García Sotelo J; Boege M; Dávila G; Flores M; Palacios R; Morales L
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8445-8450. PubMed ID: 30962378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SCRaMbLE generates evolved yeasts with increased alkali tolerance.
    Ma L; Li Y; Chen X; Ding M; Wu Y; Yuan YJ
    Microb Cell Fact; 2019 Mar; 18(1):52. PubMed ID: 30857530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCRaMbLE: A Study of Its Robustness and Challenges through Enhancement of Hygromycin B Resistance in a Semi-Synthetic Yeast.
    Ong JY; Swidah R; Monti M; Schindler D; Dai J; Cai Y
    Bioengineering (Basel); 2021 Mar; 8(3):. PubMed ID: 33806931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D organization of synthetic and scrambled chromosomes.
    Mercy G; Mozziconacci J; Scolari VF; Yang K; Zhao G; Thierry A; Luo Y; Mitchell LA; Shen M; Shen Y; Walker R; Zhang W; Wu Y; Xie ZX; Luo Z; Cai Y; Dai J; Yang H; Yuan YJ; Boeke JD; Bader JS; Muller H; Koszul R
    Science; 2017 Mar; 355(6329):. PubMed ID: 28280150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE.
    Zhang H; Fu X; Gong X; Wang Y; Zhang H; Zhao Y; Shen Y
    Nat Commun; 2022 Oct; 13(1):5836. PubMed ID: 36192484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Colorimetric Detection of Genome Evolution in SCRaMbLEd Synthetic
    Wightman ELI; Kroukamp H; Pretorius IS; Paulsen IT; Nevalainen HKM
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33271913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces cerevisiae.
    Lin Q; Qi H; Wu Y; Yuan Y
    Sci Rep; 2015 Oct; 5():15249. PubMed ID: 26477943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the fitness landscapes of a SCRaMbLEd yeast genome.
    Yang B; Misirli G; Wipat A; Hallinan J
    Biosystems; 2022 Sep; 219():104730. PubMed ID: 35772570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.
    Hochrein L; Mitchell LA; Schulz K; Messerschmidt K; Mueller-Roeber B
    Nat Commun; 2018 May; 9(1):1931. PubMed ID: 29789561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise control of SCRaMbLE in synthetic haploid and diploid yeast.
    Jia B; Wu Y; Li BZ; Mitchell LA; Liu H; Pan S; Wang J; Zhang HR; Jia N; Li B; Shen M; Xie ZX; Liu D; Cao YX; Li X; Zhou X; Qi H; Boeke JD; Yuan YJ
    Nat Commun; 2018 May; 9(1):1933. PubMed ID: 29789567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization.
    Dymond J; Boeke J
    Bioeng Bugs; 2012; 3(3):168-71. PubMed ID: 22572789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of synthetic yeast chromosome evolution shaped by hierarchical chromatin organization.
    Zhou S; Wu Y; Zhao Y; Zhang Z; Jiang L; Liu L; Zhang Y; Tang J; Yuan YJ
    Natl Sci Rev; 2023 May; 10(5):nwad073. PubMed ID: 37223244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid evolution and mechanism elucidation for efficient cellobiose-utilizing Saccharomyces cerevisiae through Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution.
    Zhang Y; Xu Z; Lu M; Ding B; Chen S; Wen Z; Yu Y; Zhou L; Jin M
    Bioresour Technol; 2022 Jul; 356():127268. PubMed ID: 35533888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.