These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38278846)

  • 1. A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices.
    Wulfkühler JP; Nguyen HD; Peiffer L; Tajmar M
    Sci Rep; 2024 Jan; 14(1):2261. PubMed ID: 38278846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic characteristics of ions in an inertial electrostatic confinement device.
    Bhattacharjee D; Buzarbaruah N; Mohanty SR; Adhikari S
    Phys Rev E; 2020 Dec; 102(6-1):063205. PubMed ID: 33465992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self characterization of a coded aperture array for neutron source imaging.
    Volegov PL; Danly CR; Fittinghoff DN; Guler N; Merrill FE; Wilde CH
    Rev Sci Instrum; 2014 Dec; 85(12):123506. PubMed ID: 25554292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of inertial electrostatic confinement fusion using a finite-volume scheme for the one-dimensional Vlasov equation.
    Black J; Wood-Thanan M; Maroni A; Sánchez E
    Phys Rev E; 2021 Feb; 103(2-1):023212. PubMed ID: 33736071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical laws of particle extraction from single-grid source of bipolar ion-electron flow.
    Dudin SV; Rafalskyi DV
    Rev Sci Instrum; 2012 Nov; 83(11):113302. PubMed ID: 23206053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coded aperture with sub-mean free-path thickness for neutron implosion geometry imaging on inertial confinement fusion and inertial fusion energy experiments.
    Selwood MP; Fittinghoff DN; Volegov PL; Williams GJ; Murphy CD
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37916914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.
    Guler N; Volegov P; Danly CR; Grim GP; Merrill FE; Wilde CH
    Rev Sci Instrum; 2012 Oct; 83(10):10D316. PubMed ID: 23126842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.
    Crăciun C
    J Magn Reson; 2014 Aug; 245():63-78. PubMed ID: 24968092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aperture tolerances for neutron-imaging systems in inertial confinement fusion.
    Ghilea MC; Sangster TC; Meyerhofer DD; Lerche RA; Disdier L
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023501. PubMed ID: 18315293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.
    Tsubouchi T; Henry T; Ureba A; Valdman A; Bassler N; Siegbahn A
    Med Phys; 2018 Mar; 45(3):1210-1221. PubMed ID: 29319842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Doppler spectroscopy in H2 to the prediction of experimental D(d,n)3He reaction rates in an inertial electrostatic confinement device.
    Kipritidis J; Khachan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026403. PubMed ID: 19391851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irregular distribution of grid cell firing fields in rats exploring a 3D volumetric space.
    Grieves RM; Jedidi-Ayoub S; Mishchanchuk K; Liu A; Renaudineau S; Duvelle É; Jeffery KJ
    Nat Neurosci; 2021 Nov; 24(11):1567-1573. PubMed ID: 34381241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of ion optics with square apertures for high-power ion thrusters.
    Madeev S; Selivanov M; Shagayda A; Lovtsov A
    Rev Sci Instrum; 2019 Apr; 90(4):043302. PubMed ID: 31042970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
    Boschitsch AH; Fenley MO
    J Chem Theory Comput; 2011 May; 7(5):1524-1540. PubMed ID: 21984876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation and Optimization of CNTs Cold Cathode Emission Grid Structure.
    Zhang Y; Liu X; Zhao L; Li Y; Li Z
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the light transmission of plasmonic metamaterials through polygonal aperture arrays.
    Wang J; Zhou W; Li EP
    Opt Express; 2009 Oct; 17(22):20349-54. PubMed ID: 19997263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutron source reconstruction from pinhole imaging at National Ignition Facility.
    Volegov P; Danly CR; Fittinghoff DN; Grim GP; Guler N; Izumi N; Ma T; Merrill FE; Warrick AL; Wilde CH; Wilson DC
    Rev Sci Instrum; 2014 Feb; 85(2):023508. PubMed ID: 24593362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres.
    Goncharov VN; Igumenshchev IV; Harding DR; Morse SFB; Hu SX; Radha PB; Froula DH; Regan SP; Sangster TC; Campbell EM
    Phys Rev Lett; 2020 Aug; 125(6):065001. PubMed ID: 32845678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deuterium anions in inertial electrostatic confinement devices.
    Boris DR; Alderson E; Becerra G; Donovan DC; Egle B; Emmert GA; Garrison L; Kulcinski GL; Santarius JF; Schuff C; Zenobia SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036408. PubMed ID: 19905231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.