These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38279081)

  • 1. ECDEP: identifying essential proteins based on evolutionary community discovery and subcellular localization.
    Ye C; Wu Q; Chen S; Zhang X; Xu W; Wu Y; Zhang Y; Yue Y
    BMC Genomics; 2024 Jan; 25(1):117. PubMed ID: 38279081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning framework for identifying essential proteins based on multiple biological information.
    Yue Y; Ye C; Peng PY; Zhai HX; Ahmad I; Xia C; Wu YZ; Zhang YH
    BMC Bioinformatics; 2022 Aug; 23(1):318. PubMed ID: 35927611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACDMBI: A deep learning model based on community division and multi-source biological information fusion predicts essential proteins.
    Lu P; Tian J
    Comput Biol Chem; 2024 Oct; 112():108115. PubMed ID: 38865861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rechecking the Centrality-Lethality Rule in the Scope of Protein Subcellular Localization Interaction Networks.
    Peng X; Wang J; Wang J; Wu FX; Pan Y
    PLoS One; 2015; 10(6):e0130743. PubMed ID: 26115027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological and functional comparison of community detection algorithms in biological networks.
    Rahiminejad S; Maurya MR; Subramaniam S
    BMC Bioinformatics; 2019 Apr; 20(1):212. PubMed ID: 31029085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for the discovery of essential proteins.
    Zhang X; Xu J; Xiao WX
    PLoS One; 2013; 8(3):e58763. PubMed ID: 23555595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An iteration method for identifying yeast essential proteins from heterogeneous network.
    Zhao B; Zhao Y; Zhang X; Zhang Z; Zhang F; Wang L
    BMC Bioinformatics; 2019 Jun; 20(1):355. PubMed ID: 31234779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An iteration model for identifying essential proteins by combining comprehensive PPI network with biological information.
    Li S; Zhang Z; Li X; Tan Y; Wang L; Chen Z
    BMC Bioinformatics; 2021 Sep; 22(1):430. PubMed ID: 34496745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SDNN-PPI: self-attention with deep neural network effect on protein-protein interaction prediction.
    Li X; Han P; Wang G; Chen W; Wang S; Song T
    BMC Genomics; 2022 Jun; 23(1):474. PubMed ID: 35761175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Protein-Protein Interactions Based on Integrating Deep Learning and Feature Fusion.
    Tran HN; Nguyen PX; Guo F; Wang J
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global alignment of multiple protein interaction networks with application to functional orthology detection.
    Singh R; Xu J; Berger B
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12763-8. PubMed ID: 18725631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y; Tang X; Hu X; Wu W; Ping Q
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):470. PubMed ID: 29219067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ClusterM: a scalable algorithm for computational prediction of conserved protein complexes across multiple protein interaction networks.
    Wang Y; Jeong H; Yoon BJ; Qian X
    BMC Genomics; 2020 Nov; 21(Suppl 10):615. PubMed ID: 33208103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Refined Protein Interaction Network for Predicting Essential Proteins.
    Li M; Ni P; Chen X; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1386-1397. PubMed ID: 28186903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Central Edge Selection Based Overlapping Community Detection Algorithm for the Detection of Overlapping Structures in Protein⁻Protein Interaction Networks.
    Zhang F; Ma A; Wang Z; Ma Q; Liu B; Huang L; Wang Y
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information.
    Zeng M; Li M; Fei Z; Wu FX; Li Y; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):296-305. PubMed ID: 30736002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.
    Rodgers-Melnick E; Culp M; DiFazio SP
    BMC Genomics; 2013 Sep; 14():608. PubMed ID: 24015873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.
    Jiang Y; Wang Y; Pang W; Chen L; Sun H; Liang Y; Blanzieri E
    Methods; 2015 Jul; 83():51-62. PubMed ID: 25892709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel scheme for essential protein discovery based on multi-source biological information.
    Liu W; Ma L; Chen L; Chen B; Jeon B; Qiang J
    J Theor Biol; 2020 Nov; 504():110414. PubMed ID: 32712150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.