These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 382791)

  • 1. Scorpion toxins: chemistry and mode of action.
    Rochat H; Bernard P; Couraud F
    Adv Cytopharmacol; 1979; 3():325-34. PubMed ID: 382791
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of toxins from the scorpion Buthus eupeus on the sodium channels of the membranes of nodes of Ranvier].
    Mozhaeva GN; Naumov AP; Soldatov NM; Grishin EV
    Biofizika; 1979; 24(2):235-41. PubMed ID: 444600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of several sea anemone and scorpion toxins on excitability and ionic currents in the giant axon of the cockroach.
    Pelhate M; Laufer J; Pichon Y; Zlotkin E
    J Physiol (Paris); 1984; 79(4):309-17. PubMed ID: 6152295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of sea anemone and scorpion toxins binding to Kv1 channels: an example of convergent evolution.
    Gasparini S; Gilquin B; Ménez A
    Toxicon; 2004 Jun; 43(8):901-8. PubMed ID: 15208023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of sea anemone and scorpion neurotoxins with tetrodotoxin-resistant Na+ channels in rat myoblasts. A comparison with Na+ channels in other excitable and non-excitable cells.
    Frelin C; Vigne P; Schweitz H; Lazdunski M
    Mol Pharmacol; 1984 Jul; 26(1):70-4. PubMed ID: 6146926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential sodium ionophore.
    Catterall WA; Beress L
    J Biol Chem; 1978 Oct; 253(20):7393-6. PubMed ID: 29897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of scorpion toxins with the sodium channel.
    Rochat H; Darbon H; Jover E; Martin MF; Bablito J; Couraud F
    J Physiol (Paris); 1984; 79(4):334-7. PubMed ID: 6099416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sea anemone toxins: tools in the study of excitable membranes.
    Rathmayer W
    Adv Cytopharmacol; 1979; 3():335-44. PubMed ID: 382792
    [No Abstract]   [Full Text] [Related]  

  • 9. Biochemical and electrophysiological characteristics of toxins isolated from the venom of the scorpion Centruroides sculpturatus.
    Meves H; Simard JM; Watt DD
    J Physiol (Paris); 1984; 79(4):185-91. PubMed ID: 6099410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and physiological characterization of neurotoxins from venoms of the scorpions centruroides sculpturatus and leiurus quinquestriatus.
    Wang GK; Strichartz GR
    Mol Pharmacol; 1983 Mar; 23(2):519-33. PubMed ID: 6300654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of scorpion and sea anemone neurotoxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells.
    Couraud F; Rochat H; Lissitzky S
    Biochem Biophys Res Commun; 1978 Aug; 83(4):1525-30. PubMed ID: 29635
    [No Abstract]   [Full Text] [Related]  

  • 12. [Molecular mechanisms of the action of local anesthetics].
    Mokhort NA
    Anesteziol Reanimatol; 1986; (2):59-62. PubMed ID: 2424346
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction of polypeptide neurotoxins with a receptor site associated with voltage-sensitive sodium channels.
    Catterall WA; Beneski DA
    J Supramol Struct; 1980; 14(3):295-303. PubMed ID: 6261042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, purification and N-terminal sequencing of a bioactive peptide that alters action potentials from the venom of Buthus martensii Karsch.
    Hahin R; Chen Z; Reddy G; Li Y
    J Nat Toxins; 2001 Aug; 10(3):199-212. PubMed ID: 11491460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Scorpion toxins: a study model of the structure-function relation of proteins].
    el Ayeb M; Borchani L; Kharrat R; Karoui H; Pelhate M; Rochat H
    Arch Inst Pasteur Tunis; 1994; 71(3-4):469-72. PubMed ID: 8801845
    [No Abstract]   [Full Text] [Related]  

  • 16. Interaction of neurotoxins with the selectivity filter and the gating system of the sodium channel.
    Lazdunski M; Balerna M; Chicheportiche R; Fosset M; Jacques Y; Lombet A; Romey G; Schweitz H
    Adv Cytopharmacol; 1979; 3():353-61. PubMed ID: 382793
    [No Abstract]   [Full Text] [Related]  

  • 17. Toxins interacting with ether-à-go-go-related gene voltage-dependent potassium channels.
    Wanke E; Restano-Cassulini R
    Toxicon; 2007 Feb; 49(2):239-48. PubMed ID: 17097705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The differential preference of scorpion alpha-toxins for insect or mammalian sodium channels: implications for improved insect control.
    Gordon D; Karbat I; Ilan N; Cohen L; Kahn R; Gilles N; Dong K; Stühmer W; Tytgat J; Gurevitz M
    Toxicon; 2007 Mar; 49(4):452-72. PubMed ID: 17215013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemistry and axonal action of two insect toxins derived from the venom of the scorpion buthotus judaicus.
    Zlotkin E; Lester D; Lazarovici P; Pelhate M
    Toxicon; 1982; 20(1):323-31. PubMed ID: 7080046
    [No Abstract]   [Full Text] [Related]  

  • 20. The first potassium channel toxin from the venom of the Iranian scorpion Odonthobuthus doriae.
    Abdel-Mottaleb Y; Clynen E; Jalali A; Bosmans F; Vatanpour H; Schoofs L; Tytgat J
    FEBS Lett; 2006 Nov; 580(26):6254-8. PubMed ID: 17070524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.