These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 38279508)

  • 1. When Machine Learning Meets 2D Materials: A Review.
    Lu B; Xia Y; Ren Y; Xie M; Zhou L; Vinai G; Morton SA; Wee ATS; van der Wiel WG; Zhang W; Wong PKJ
    Adv Sci (Weinh); 2024 Apr; 11(13):e2305277. PubMed ID: 38279508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-Driven Design and Autonomous Experimentation in Soft and Biological Materials Engineering.
    Ferguson AL; Brown KA
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():25-44. PubMed ID: 35236085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams.
    Ament S; Amsler M; Sutherland DR; Chang MC; Guevarra D; Connolly AB; Gregoire JM; Thompson MO; Gomes CP; van Dover RB
    Sci Adv; 2021 Dec; 7(51):eabg4930. PubMed ID: 34919429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Van der Waals heterostructures for spintronics and opto-spintronics.
    Sierra JF; Fabian J; Kawakami RK; Roche S; Valenzuela SO
    Nat Nanotechnol; 2021 Aug; 16(8):856-868. PubMed ID: 34282312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors.
    Liu Y; Fang Y; Yang D; Pi X; Wang P
    J Phys Condens Matter; 2022 Mar; 34(18):. PubMed ID: 35134786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach.
    Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-Driven Strategies for Accelerated Materials Design.
    Pollice R; Dos Passos Gomes G; Aldeghi M; Hickman RJ; Krenn M; Lavigne C; Lindner-D'Addario M; Nigam A; Ser CT; Yao Z; Aspuru-Guzik A
    Acc Chem Res; 2021 Feb; 54(4):849-860. PubMed ID: 33528245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning-Assisted Exploration of Intrinsically Spin-Ordered Two-Dimensional (2D) Nanomagnets.
    Kar S; Ray SJ
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36745-36751. PubMed ID: 38975962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-assisted enzyme engineering.
    Siedhoff NE; Schwaneberg U; Davari MD
    Methods Enzymol; 2020; 643():281-315. PubMed ID: 32896285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stacking engineering in layered homostructures: transitioning from 2D to 3D architectures.
    Wang J; Cheng F; Sun Y; Xu H; Cao L
    Phys Chem Chem Phys; 2024 Mar; 26(10):7988-8012. PubMed ID: 38380525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Intelligence for Autonomous Molecular Design: A Perspective.
    Joshi RP; Kumar N
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and opportunities in 2D heterostructures for electronic and optoelectronic devices.
    Chakraborty SK; Kundu B; Nayak B; Dash SP; Sahoo PK
    iScience; 2022 Mar; 25(3):103942. PubMed ID: 35265814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence to bring nanomedicine to life.
    Serov N; Vinogradov V
    Adv Drug Deliv Rev; 2022 May; 184():114194. PubMed ID: 35283223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Exciton and Valley Dynamics in Two-Dimensional Heterostructures with Atomically Precise Interlayer Proximity.
    Zhou H; Zhao Y; Tao W; Li Y; Zhou Q; Zhu H
    ACS Nano; 2020 Apr; 14(4):4618-4625. PubMed ID: 32181635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual Materials Intelligence for Design and Discovery of Advanced Electrocatalysts.
    Malek A; Eslamibidgoli MJ; Mokhtari M; Wang Q; Eikerling MH; Malek K
    Chemphyschem; 2019 Nov; 20(22):2946-2955. PubMed ID: 31587461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacking-Engineered Heterostructures in Transition Metal Dichalcogenides.
    Wang S; Cui X; Jian C; Cheng H; Niu M; Yu J; Yan J; Huang W
    Adv Mater; 2021 Apr; 33(16):e2005735. PubMed ID: 33719078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Paves the Way for High Entropy Compounds Exploration: Challenges, Progress, and Outlook.
    Wan X; Li Z; Yu W; Wang A; Ke X; Guo H; Su J; Li L; Gui Q; Zhao S; Robertson J; Zhang Z; Guo Y
    Adv Mater; 2023 Sep; ():e2305192. PubMed ID: 37688451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery.
    Pasrija P; Jha P; Upadhyaya P; Khan MS; Chopra M
    Curr Top Med Chem; 2022; 22(20):1692-1727. PubMed ID: 35786336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges.
    Chen G; Shen Z; Iyer A; Ghumman UF; Tang S; Bi J; Chen W; Li Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence and machine learning in design of mechanical materials.
    Guo K; Yang Z; Yu CH; Buehler MJ
    Mater Horiz; 2021 Apr; 8(4):1153-1172. PubMed ID: 34821909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.