These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Facile autofluorescence suppression enabling tracking of single viruses in live cells. Chen YC; Sood C; Francis AC; Melikyan GB; Dickson RM J Biol Chem; 2019 Dec; 294(50):19111-19118. PubMed ID: 31694918 [TBL] [Abstract][Full Text] [Related]
23. Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan localisation in cultured tumour cells. Teiten MH; Bezdetnaya L; Morlière P; Santus R; Guillemin F Br J Cancer; 2003 Jan; 88(1):146-52. PubMed ID: 12556974 [TBL] [Abstract][Full Text] [Related]
24. Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast. Young CL; Raden DL; Caplan JL; Czymmek KJ; Robinson AS Yeast; 2012 Mar; 29(3-4):119-36. PubMed ID: 22473760 [TBL] [Abstract][Full Text] [Related]
25. Zhao X; Shi Y; Pan T; Lu D; Xiong J; Li B; Xin H Nano Lett; 2022 Jan; 22(1):402-410. PubMed ID: 34968073 [TBL] [Abstract][Full Text] [Related]
26. Multiphoton microscopy in life sciences. König K J Microsc; 2000 Nov; 200(Pt 2):83-104. PubMed ID: 11106949 [TBL] [Abstract][Full Text] [Related]
27. Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Manjarrés IM; Chamero P; Domingo B; Molina F; Llopis J; Alonso MT; García-Sancho J Pflugers Arch; 2008 Feb; 455(5):961-70. PubMed ID: 17912545 [TBL] [Abstract][Full Text] [Related]
28. Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Zorov DB; Kobrinsky E; Juhaszova M; Sollott SJ Circ Res; 2004 Aug; 95(3):239-52. PubMed ID: 15297386 [TBL] [Abstract][Full Text] [Related]
29. Optimising the precision for localising fluorescent proteins in living cells by 2D Gaussian fitting of digital images: application to COPII-coated endoplasmic reticulum exit sites. Spence P; Gupta V; Stephens DJ; Hudson AJ Eur Biophys J; 2008 Oct; 37(8):1335-49. PubMed ID: 18504570 [TBL] [Abstract][Full Text] [Related]
30. Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. Zhu H; Fan J; Du J; Peng X Acc Chem Res; 2016 Oct; 49(10):2115-2126. PubMed ID: 27661761 [TBL] [Abstract][Full Text] [Related]
31. Spatiotemporal Subcellular Manipulation of the Microtubule Cytoskeleton in the Living Preimplantation Mouse Embryo using Photostatins. Greaney J; Hawdon A; Stathatos GG; Aberkane A; Zenker J J Vis Exp; 2021 Nov; (177):. PubMed ID: 34927610 [TBL] [Abstract][Full Text] [Related]
32. Probing endoplasmic reticulum dynamics using fluorescence imaging and photobleaching techniques. Costantini L; Snapp E Curr Protoc Cell Biol; 2013 Sep; 60():21.7.1-21.7.29. PubMed ID: 24510787 [TBL] [Abstract][Full Text] [Related]
33. Recovery Mechanism of Endoplasmic Reticulum Revealed by Fluorescence Lifetime Imaging in Live Cells. Chen J; Han G; Liu Z; Wang H; Wang D; Zhao J; Liu B; Zhang R; Zhang Z Anal Chem; 2022 Mar; 94(12):5173-5180. PubMed ID: 35245042 [TBL] [Abstract][Full Text] [Related]
34. Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP. Gong WL; Yan J; Zhao LX; Li C; Huang ZL; Tang BZ; Zhu MQ Photochem Photobiol Sci; 2016 Nov; 15(11):1433-1441. PubMed ID: 27739551 [TBL] [Abstract][Full Text] [Related]
35. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
36. Extended-resolution imaging of the interaction of lipid droplets and mitochondria. Pribasnig M; Kien B; Pusch L; Haemmerle G; Zimmermann R; Wolinski H Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Oct; 1863(10):1285-1296. PubMed ID: 30305245 [TBL] [Abstract][Full Text] [Related]
37. The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Natter K; Leitner P; Faschinger A; Wolinski H; McCraith S; Fields S; Kohlwein SD Mol Cell Proteomics; 2005 May; 4(5):662-72. PubMed ID: 15716577 [TBL] [Abstract][Full Text] [Related]
38. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. Benedetti L; Marvin JS; Falahati H; Guillén-Samander A; Looger LL; De Camilli P Elife; 2020 Nov; 9():. PubMed ID: 33174843 [TBL] [Abstract][Full Text] [Related]
39. Photo-convertible fluorescent proteins as tools for fresh insights on subcellular interactions in plants. Griffiths N; Jaipargas EA; Wozny MR; Barton KA; Mathur N; Delfosse K; Mathur J J Microsc; 2016 Aug; 263(2):148-57. PubMed ID: 26820914 [TBL] [Abstract][Full Text] [Related]
40. Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy. Smith PJ; Blunt N; Wiltshire M; Hoy T; Teesdale-Spittle P; Craven MR; Watson JV; Amos WB; Errington RJ; Patterson LH Cytometry; 2000 Aug; 40(4):280-91. PubMed ID: 10918279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]