These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38279784)

  • 1. Configurational Disorder, Strong Anharmonicity, and Coupled Host Dynamics Lead to Superionic Transport in Li
    Ahammed B; Ertekin E
    Adv Mater; 2024 Apr; 36(16):e2310537. PubMed ID: 38279784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anharmonic lattice dynamics and superionic transition in AgCrSe
    Ding J; Niedziela JL; Bansal D; Wang J; He X; May AF; Ehlers G; Abernathy DL; Said A; Alatas A; Ren Y; Arya G; Delaire O
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):3930-3937. PubMed ID: 32029595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag
    Ren Q; Gupta MK; Jin M; Ding J; Wu J; Chen Z; Lin S; Fabelo O; Rodríguez-Velamazán JA; Kofu M; Nakajima K; Wolf M; Zhu F; Wang J; Cheng Z; Wang G; Tong X; Pei Y; Delaire O; Ma J
    Nat Mater; 2023 Aug; 22(8):999-1006. PubMed ID: 37202488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic Phonon Scattering and Thermal Transport Property Induced by the Liquid-like Behavior of AgCrSe
    Wang C; Chen Y
    Nano Lett; 2023 Apr; 23(8):3524-3531. PubMed ID: 37067069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon-Lithium Ion Interactions: A Case Study of LiM(SeO
    Ouyang R; Yang Y; Guan C; Zhu H
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39361710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anharmonic Cation-Anion Coupling Dynamics Assisted Lithium-Ion Diffusion in Sulfide Solid Electrolytes.
    Xu Z; Chen X; Zhu H; Li X
    Adv Mater; 2022 Dec; 34(49):e2207411. PubMed ID: 36267037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hopping Time Scales and the Phonon-Liquid Electron-Crystal Picture in Thermoelectric Copper Selenide.
    Voneshen DJ; Walker HC; Refson K; Goff JP
    Phys Rev Lett; 2017 Apr; 118(14):145901. PubMed ID: 28430482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halide Superionic Conductors with Non-Close-Packed Anion Frameworks.
    Luo JD; Zhang Y; Cheng X; Li F; Tan HY; Zhou MY; Wang ZW; Hao XD; Yin YC; Jiang B; Yao HB
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202400424. PubMed ID: 38433094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Stability, Strong Four-Phonon Scattering, and Low Lattice Thermal Conductivity in Superatom-Based Superionic Conductor Na
    Du PH; Zhang C; Sun J; Li T; Sun Q
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47882-47891. PubMed ID: 36239388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor Na
    Krauskopf T; Muy S; Culver SP; Ohno S; Delaire O; Shao-Horn Y; Zeier WG
    J Am Chem Soc; 2018 Oct; 140(43):14464-14473. PubMed ID: 30284822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halide Superionic Conductors for All-Solid-State Batteries: Effects of Synthesis and Composition on Lithium-Ion Conductivity.
    Yang S; Kim SY; Chen G
    ACS Energy Lett; 2024 May; 9(5):2212-2221. PubMed ID: 38751969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anharmonic Lattice Dynamics in Sodium Ion Conductors.
    Brenner TM; Grumet M; Till P; Asher M; Zeier WG; Egger DA; Yaffe O
    J Phys Chem Lett; 2022 Jun; 13(25):5938-5945. PubMed ID: 35731950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nonexistence of a paddlewheel effect in superionic conductors.
    Jun K; Lee B; L Kam R; Ceder G
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2316493121. PubMed ID: 38657039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anharmonic phonon frequency and ultralow lattice thermal conductivity in β-Cu
    Zhang W; Zheng C; Dong Y; Yang JY; Liu L
    Phys Chem Chem Phys; 2020 Dec; 22(48):28086-28092. PubMed ID: 33289745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design principles for solid-state lithium superionic conductors.
    Wang Y; Richards WD; Ong SP; Miara LJ; Kim JC; Mo Y; Ceder G
    Nat Mater; 2015 Oct; 14(10):1026-31. PubMed ID: 26280225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li-rich antiperovskite superionic conductors based on cluster ions.
    Fang H; Jena P
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11046-11051. PubMed ID: 28973929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal Structures and Phase Stability of the Li
    Kam RL; Jun K; Barroso-Luque L; Yang JH; Xie F; Ceder G
    Chem Mater; 2023 Nov; 35(21):9111-9126. PubMed ID: 38027543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles.
    Wang X; Xiao R; Li H; Chen L
    Phys Rev Lett; 2017 May; 118(19):195901. PubMed ID: 28548520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Origin of Superionic Lithium Diffusion in Anion-Disordered Li
    Morgan BJ
    Chem Mater; 2021 Mar; 33(6):2004-2018. PubMed ID: 33840894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-driven ultrafast impedance spectroscopy for measuring complex ion hopping processes.
    Pham KH; Lin AK; Spear NA; Cushing SK
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39037294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.