These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38279817)

  • 1. Interpretable machine learning model for prediction of overall survival in laryngeal cancer.
    Alabi RO; Almangush A; Elmusrati M; Leivo I; Mäkitie AA
    Acta Otolaryngol; 2024 Jan; ():1-7. PubMed ID: 38279817
    [No Abstract]   [Full Text] [Related]  

  • 2. Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP.
    Alabi RO; Elmusrati M; Leivo I; Almangush A; Mäkitie AA
    Sci Rep; 2023 Jun; 13(1):8984. PubMed ID: 37268685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer.
    Alabi RO; Almangush A; Elmusrati M; Leivo I; Mäkitie AA
    Int J Med Inform; 2022 Dec; 168():104896. PubMed ID: 36279655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A practical online prediction platform to predict the survival status of laryngeal squamous cell carcinoma after 5 years.
    Li Z; Li T; Zhang P; Wang X
    Am J Otolaryngol; 2024; 45(3):104209. PubMed ID: 38154199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient interpretable stacking ensemble model for lung cancer prognosis.
    Arif U; Zhang C; Hussain S; Abbasi AR
    Comput Biol Chem; 2024 Dec; 113():108248. PubMed ID: 39426256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Overall Survival Using Machine Learning Algorithms in Oral Cavity Squamous Cell Carcinoma.
    Tan JY; Adeoye J; Thomson P; Sharma D; Ramamurthy P; Choi SW
    Anticancer Res; 2022 Dec; 42(12):5859-5866. PubMed ID: 36456152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study.
    Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z
    JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of an ensemble machine-learning model for predicting early mortality among patients with bone metastases of hepatocellular carcinoma.
    Long Z; Yi M; Qin Y; Ye Q; Che X; Wang S; Lei M
    Front Oncol; 2023; 13():1144039. PubMed ID: 36890826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning-based model predicts survival for patients with laryngeal squamous cell carcinoma: a large population-based study.
    Liao F; Wang W; Wang J
    Eur Arch Otorhinolaryngol; 2023 Feb; 280(2):789-795. PubMed ID: 36030468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent diagnosis of Kawasaki disease from real-world data using interpretable machine learning models.
    Duan Y; Wang R; Huang Z; Chen H; Tang M; Zhou J; Hu Z; Hu W; Chen Z; Qian Q; Wang H
    Hellenic J Cardiol; 2024 Aug; ():. PubMed ID: 39128707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of machine learning techniques for predicting survival in ovarian cancer.
    Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations.
    Zou Y; Shi Y; Sun F; Liu J; Guo Y; Zhang H; Lu X; Gong Y; Xia S
    Comput Methods Programs Biomed; 2022 Oct; 225():107038. PubMed ID: 35930861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IHCP: interpretable hepatitis C prediction system based on black-box machine learning models.
    Fan Y; Lu X; Sun G
    BMC Bioinformatics; 2023 Sep; 24(1):333. PubMed ID: 37674125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Machine Learning Model Based on Health Records for Predicting Recurrence After Microwave Ablation of Hepatocellular Carcinoma.
    An C; Yang H; Yu X; Han ZY; Cheng Z; Liu F; Dou J; Li B; Li Y; Li Y; Yu J; Liang P
    J Hepatocell Carcinoma; 2022; 9():671-684. PubMed ID: 35923613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Interpretation of Multiple Machine Learning Models for Predicting Postoperative Delayed Remission of Acromegaly Patients During Long-Term Follow-Up.
    Dai C; Fan Y; Li Y; Bao X; Li Y; Su M; Yao Y; Deng K; Xing B; Feng F; Feng M; Wang R
    Front Endocrinol (Lausanne); 2020; 11():643. PubMed ID: 33042013
    [No Abstract]   [Full Text] [Related]  

  • 17. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.
    Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S
    Front Neurol; 2023; 14():1185447. PubMed ID: 37614971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma.
    Feng M; Zhang J; Zhou X; Mo H; Jia L; Zhang C; Hu Y; Yuan W
    J Oncol; 2022; 2022():6356399. PubMed ID: 36411795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive modeling of perioperative blood transfusion in lumbar posterior interbody fusion using machine learning.
    Lang FF; Liu LY; Wang SW
    Front Physiol; 2023; 14():1306453. PubMed ID: 38187137
    [No Abstract]   [Full Text] [Related]  

  • 20. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.