BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38280100)

  • 1. Diagnosis of skull-base invasion by nasopharyngeal tumors on CT with a deep-learning approach.
    Nakagawa J; Fujima N; Hirata K; Harada T; Wakabayashi N; Takano Y; Homma A; Kano S; Minowa K; Kudo K
    Jpn J Radiol; 2024 May; 42(5):450-459. PubMed ID: 38280100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone Subtraction Iodine Imaging Using Area Detector CT for Evaluation of Skull Base Invasion by Nasopharyngeal Carcinoma.
    Hiyama T; Kuno H; Sekiya K; Tsushima S; Sakai O; Kusumoto M; Kobayashi T
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):135-141. PubMed ID: 30523140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Value of (99)Tc(m)-MDP SPECT/CT in clinical decision-making for nasopharyngeal carcinoma and a comparison of the values of different imaging techniques for diagnosing skull-base bone invasion].
    Li W; Zhang RS; Zhang LQ; Lu BG; Fu WH
    Zhonghua Zhong Liu Za Zhi; 2017 Feb; 39(2):133-137. PubMed ID: 28219209
    [No Abstract]   [Full Text] [Related]  

  • 4. Utility of the deep learning technique for the diagnosis of orbital invasion on CT in patients with a nasal or sinonasal tumor.
    Nakagawa J; Fujima N; Hirata K; Tang M; Tsuneta S; Suzuki J; Harada T; Ikebe Y; Homma A; Kano S; Minowa K; Kudo K
    Cancer Imaging; 2022 Sep; 22(1):52. PubMed ID: 36138422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.
    Zhang SX; Han PH; Zhang GQ; Wang RH; Ge YB; Ren ZG; Li JS; Fu WH
    Biomed Mater Eng; 2014; 24(1):1117-24. PubMed ID: 24212004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning for Predicting Distant Metastasis in Patients with Nasopharyngeal Carcinoma Based on Pre-Radiotherapy Magnetic Resonance Imaging.
    Hua HL; Deng YQ; Li S; Li ST; Li F; Xiao BK; Huang J; Tao ZZ
    Comb Chem High Throughput Screen; 2023; 26(7):1351-1363. PubMed ID: 36121078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative diagnostic value of 18F-fluoride PET-CT versus MRI for skull-base bone invasion in nasopharyngeal carcinoma.
    Le Y; Chen Y; Zhou F; Liu G; Huang Z; Chen Y
    Nucl Med Commun; 2016 Oct; 37(10):1062-8. PubMed ID: 27159589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central skull base invasion of maxillofacial tumors: computed tomography appearance.
    Yu Q; Wang P; Shi H; Luo J
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2000 May; 89(5):643-50. PubMed ID: 10807726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
    Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W
    Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Spiral computed tomography (CT) and magnetic resonance imaging (MRI) in assessment of the skull base encroachment in nasopharyngeal carcinoma].
    Xie CM; Liang BL; Wu PH; Zheng L; Ruan CM; Li L; Mo YX; Zhong R; Chen YX; Lin HG
    Ai Zheng; 2003 Jul; 22(7):729-33. PubMed ID: 12866965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic performance of CT, MRI, and their combined use for the assessment of the direct cranial or intracranial extension of malignant head and neck tumors.
    Choi HY; Yoon DY; Kim ES; Baek S; Lim KJ; Seo YL; Yun EJ
    Acta Radiol; 2019 Mar; 60(3):301-307. PubMed ID: 29804473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation.
    Liu KL; Wu T; Chen PT; Tsai YM; Roth H; Wu MS; Liao WC; Wang W
    Lancet Digit Health; 2020 Jun; 2(6):e303-e313. PubMed ID: 33328124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skull-base invasion of nasopharyngeal carcinoma: magnetic resonance imaging findings and therapeutic implications.
    Nishioka T; Shirato H; Kagei K; Abe S; Hashimoto S; Ohmori K; Yamazaki A; Fukuda S; Miyasaka K
    Int J Radiat Oncol Biol Phys; 2000 May; 47(2):395-400. PubMed ID: 10802365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic value of diffusion-weighted magnetic resonance imaging for local and skull base recurrence of nasopharyngeal carcinoma after radiotherapy.
    Wang C; Liu L; Lai S; Su D; Liu Y; Jin G; Zhu X; Luo N
    Medicine (Baltimore); 2018 Aug; 97(34):e11929. PubMed ID: 30142809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI.
    Wong LM; King AD; Ai QYH; Lam WKJ; Poon DMC; Ma BBY; Chan KCA; Mo FKF
    Eur Radiol; 2021 Jun; 31(6):3856-3863. PubMed ID: 33241522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A preliminary investigation on a deep learning convolutional neural networks based pulmonary tuberculosis CT diagnostic model].
    Wu SC; Wang XJ; Ji JY; Geng G; Zhang ZH; Hou DL
    Zhonghua Jie He He Hu Xi Za Zhi; 2021 May; 44(5):450-455. PubMed ID: 34865365
    [No Abstract]   [Full Text] [Related]  

  • 20. The sensitivity and specificity of high-resolution imaging in evaluating perineural spread of adenoid cystic carcinoma to the skull base.
    Hanna E; Vural E; Prokopakis E; Carrau R; Snyderman C; Weissman J
    Arch Otolaryngol Head Neck Surg; 2007 Jun; 133(6):541-5. PubMed ID: 17576903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.