These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 38280139)
1. Organic-inorganic hybrid material for hole transport in inverted perovskite solar cells. Tingare YS; Su C; Hsu YC; Lai NW; Wang WC; Lin XC; Lai PW; Yang HY; Lew XR; Li WR ChemSusChem; 2024 May; 17(10):e202301508. PubMed ID: 38280139 [TBL] [Abstract][Full Text] [Related]
2. Complex Metal Oxides as Emerging Inorganic Hole-Transporting Materials for Perovskite Solar Cells. Bai Y; He J; Ran R; Zhou W; Wang W; Shao Z Small; 2024 Jun; 20(25):e2310227. PubMed ID: 38196154 [TBL] [Abstract][Full Text] [Related]
3. Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells. Rajeswari R; Mrinalini M; Prasanthkumar S; Giribabu L Chem Rec; 2017 Jul; 17(7):681-699. PubMed ID: 28052541 [TBL] [Abstract][Full Text] [Related]
4. Heterocyclic Functionalized Donor-Acceptor Hole-Transporting Materials for Inverted Perovskite Solar Cells. Tingare YS; Wang WC; Lin HJ; Wu CW; Lin JH; Su C; Lin XC; Zhang JR; Huang YX; Tsai H; Nie W; Li WR ACS Appl Mater Interfaces; 2023 Jul; 15(26):31675-31683. PubMed ID: 37348057 [TBL] [Abstract][Full Text] [Related]
6. 3,4-Phenylenedioxythiophene (PheDOT) Based Hole-Transporting Materials for Perovskite Solar Cells. Chen J; Chen BX; Zhang FS; Yu HJ; Ma S; Kuang DB; Shao G; Su CY Chem Asian J; 2016 Apr; 11(7):1043-9. PubMed ID: 26840766 [TBL] [Abstract][Full Text] [Related]
7. Guidelines for Fabricating Highly Efficient Perovskite Solar Cells with Cu Sajid S; Alzahmi S; Salem IB; Obaidat IM Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234442 [TBL] [Abstract][Full Text] [Related]
8. Designing of phenothiazine-based hole-transport materials with excellent photovoltaic properties for high-efficiency perovskite solar cells (PSCs). Zahid WA; Akram W; Ahmad MF; Iqbal S; Abdelmohsen SAM; Alanazi MM; Elmushyakhi A; Hossain I; Iqbal J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 298():122774. PubMed ID: 37120955 [TBL] [Abstract][Full Text] [Related]
9. Positional Effect of the Triphenylamine Group on the Optical and Charge-Transfer Properties of Thiophene-Based Hole-Transporting Materials. Hao M; Chi W; Li Z Chem Asian J; 2020 Jan; 15(2):287-293. PubMed ID: 31823524 [TBL] [Abstract][Full Text] [Related]
10. Bifunctional Hole-Transport Materials with Modification and Passivation Effect for High-Performance Inverted Perovskite Solar Cells. Zhou C; Xu X; Liu Z; Sun Z; Chen Z; Chen X; Chen L; Fang X; Zhang J; Yang YM; Jia X; Yuan N; Ding J ACS Appl Mater Interfaces; 2023 May; 15(18):22752-22761. PubMed ID: 37119204 [TBL] [Abstract][Full Text] [Related]
11. Hole-Transporting Materials for Printable Perovskite Solar Cells. Vivo P; Salunke JK; Priimagi A Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28914823 [TBL] [Abstract][Full Text] [Related]
12. A Universal Dopant-Free Polymeric Hole-Transporting Material for Efficient and Stable All-Inorganic and Organic-Inorganic Perovskite Solar Cells. Liu X; Fu S; Zhang W; Xu Z; Li X; Fang J; Zhu Y ACS Appl Mater Interfaces; 2021 Nov; 13(44):52549-52559. PubMed ID: 34705431 [TBL] [Abstract][Full Text] [Related]
13. Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability. Jiang X; Yu Z; Lai J; Zhang Y; Hu M; Lei N; Wang D; Yang X; Sun L ChemSusChem; 2017 Apr; 10(8):1838-1845. PubMed ID: 28198594 [TBL] [Abstract][Full Text] [Related]
14. Advances in the Synthesis of Small Molecules as Hole Transport Materials for Lead Halide Perovskite Solar Cells. Rodríguez-Seco C; Cabau L; Vidal-Ferran A; Palomares E Acc Chem Res; 2018 Apr; 51(4):869-880. PubMed ID: 29543439 [TBL] [Abstract][Full Text] [Related]
15. Dual-Functional Enantiomeric Compounds as Hole-Transporting Materials and Interfacial Layers in Perovskite Solar Cells. Chiu YL; Li CW; Kang YH; Lin CW; Lu CW; Chen CP; Chang YJ ACS Appl Mater Interfaces; 2022 Jun; 14(22):26135-26147. PubMed ID: 35634977 [TBL] [Abstract][Full Text] [Related]
16. Influence of π-bridge conjugation on the electrochemical properties within hole transporting materials for perovskite solar cells. Hu W; Zhang Z; Cui J; Shen W; Li M; He R Nanoscale; 2017 Sep; 9(35):12916-12924. PubMed ID: 28858360 [TBL] [Abstract][Full Text] [Related]
17. Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells. Mane SB; Sutanto AA; Cheng CF; Xie MY; Chen CI; Leonardus M; Yeh SC; Beyene BB; Diau EW; Chen CT; Hung CH ACS Appl Mater Interfaces; 2017 Sep; 9(37):31950-31958. PubMed ID: 28849639 [TBL] [Abstract][Full Text] [Related]
18. Designing Hole Transport Materials with High Hole Mobility and Outstanding Interface Properties for Perovskite Solar Cells. Jiang R; Zhu R; Li ZS Chemphyschem; 2020 Aug; 21(16):1866-1872. PubMed ID: 32609405 [TBL] [Abstract][Full Text] [Related]
19. Design of an Inorganic Mesoporous Hole-Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells. Chen Y; Yang Z; Wang S; Zheng X; Wu Y; Yuan N; Zhang WH; Liu SF Adv Mater; 2018 Dec; 30(52):e1805660. PubMed ID: 30387218 [TBL] [Abstract][Full Text] [Related]
20. Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. Chen S; Liu P; Hua Y; Li Y; Kloo L; Wang X; Ong B; Wong WK; Zhu X ACS Appl Mater Interfaces; 2017 Apr; 9(15):13231-13239. PubMed ID: 28345338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]