These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38280612)

  • 1. Prediction of riverine daily minimum dissolved oxygen concentrations using hybrid deep learning and routine hydrometeorological data.
    Hu Y; Liu C; Wollheim WM
    Sci Total Environ; 2024 Mar; 918():170383. PubMed ID: 38280612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition.
    Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time series prediction of the chemical components of PM
    Liu K; Zhang Y; He H; Xiao H; Wang S; Zhang Y; Li H; Qian X
    Chemosphere; 2023 Nov; 342():140153. PubMed ID: 37714468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal convolutional long short-term memory for regional streamflow predictions.
    Mohammed A; Corzo G
    J Environ Manage; 2024 Jan; 350():119585. PubMed ID: 38016234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of dissolved oxygen concentration in aquaculture based on attention mechanism and combined neural network.
    Yang W; Liu W; Gao Q
    Math Biosci Eng; 2023 Jan; 20(1):998-1017. PubMed ID: 36650799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs.
    Yu W; Wang X; Jiang X; Zhao R; Zhao S
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):262-279. PubMed ID: 38015396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods.
    Buyuk C; Arican Alpay B; Er F
    Dentomaxillofac Radiol; 2023 Feb; 52(3):20220209. PubMed ID: 36688738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-attention (SA) temporal convolutional network (SATCN)-long short-term memory neural network (SATCN-LSTM): an advanced python code for predicting groundwater level.
    Ehteram M; Ghanbari-Adivi E
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):92903-92921. PubMed ID: 37501025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using discrete wavelet transform for optimizing COVID-19 new cases and deaths prediction worldwide with deep neural networks.
    Sperandio Nascimento EG; Ortiz J; Furtado AN; Frias D
    PLoS One; 2023; 18(4):e0282621. PubMed ID: 37023075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning method for cyanobacterial harmful algae blooms prediction in Taihu Lake, China.
    Cao H; Han L; Li L
    Harmful Algae; 2022 Mar; 113():102189. PubMed ID: 35287935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Method Based on GA-CNN-LSTM for Daily Tourist Flow Prediction at Scenic Spots.
    Lu W; Rui H; Liang C; Jiang L; Zhao S; Li K
    Entropy (Basel); 2020 Feb; 22(3):. PubMed ID: 33286035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of antibiotic-resistance genes occurrence at a recreational beach with deep learning models.
    Jang J; Abbas A; Kim M; Shin J; Kim YM; Cho KH
    Water Res; 2021 May; 196():117001. PubMed ID: 33744657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Watershed groundwater level multistep ahead forecasts by fusing convolutional-based autoencoder and LSTM models.
    Kow PY; Liou JY; Sun W; Chang LC; Chang FJ
    J Environ Manage; 2024 Feb; 351():119789. PubMed ID: 38100860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air quality prediction using CNN+LSTM-based hybrid deep learning architecture.
    Gilik A; Ogrenci AS; Ozmen A
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11920-11938. PubMed ID: 34554404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors.
    Yu X; Qiu H; Xiong S
    Front Bioeng Biotechnol; 2020; 8():63. PubMed ID: 32117941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate Streamflow Simulation Using Hybrid Deep Learning Models.
    Wegayehu EB; Muluneh FB
    Comput Intell Neurosci; 2021; 2021():5172658. PubMed ID: 34745247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks.
    Ghimire S; Yaseen ZM; Farooque AA; Deo RC; Zhang J; Tao X
    Sci Rep; 2021 Sep; 11(1):17497. PubMed ID: 34471166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.