These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38281313)

  • 1. Morphological and biochemical responses of a neotropical pest insect to low temperatures.
    León-Quinto T; Madrigal R; Cabello E; Fimia A; Serna A
    J Therm Biol; 2024 Jan; 119():103795. PubMed ID: 38281313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological response of the red palm weevil, Rhynchophorus ferrugineus, to a transient low temperature analyzed by computer tomography and holographic microscopy.
    León-Quinto T; Fimia A; Madrigal R; Serna A
    J Therm Biol; 2020 Dec; 94():102748. PubMed ID: 33292989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Cold-Hardening of a Subtropical Species, Maruca vitrata (Lepidoptera: Crambidae), Accompanies Hypertrehalosemia by Upregulating Trehalose-6-Phosphate Synthase.
    Kim Y; Lee DW; Jung JK
    Environ Entomol; 2017 Dec; 46(6):1432-1438. PubMed ID: 29029081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.
    Park Y; Kim Y
    J Insect Physiol; 2014 Aug; 67():56-63. PubMed ID: 24973793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance.
    Jagdale GB; Grewal PS
    Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong tolerance to freezing is a major survival strategy in insects inhabiting central Yakutia (Sakha Republic, Russia), the coldest region on earth.
    Li NG
    Cryobiology; 2016 Oct; 73(2):221-5. PubMed ID: 27424094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryoprotective Response as Part of the Adaptive Strategy of the Red Palm Weevil,
    León-Quinto T; Serna A
    Insects; 2022 Jan; 13(2):. PubMed ID: 35206708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insects and low temperatures: from molecular biology to distributions and abundance.
    Bale JS
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):849-62. PubMed ID: 12171648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy.
    Mietchen D; Manz B; Volke F; Storey K
    PLoS One; 2008; 3(12):e3826. PubMed ID: 19057644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climatic variability and the evolution of insect freeze tolerance.
    Sinclair BJ; Addo-Bediako A; Chown SL
    Biol Rev Camb Philos Soc; 2003 May; 78(2):181-95. PubMed ID: 12803420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid cold hardening and cold acclimation promote cold tolerance of oriental fruit fly,
    Xie Z; Xu L; Zhao J; Li N; Qin D; Xiao C; Lu Y; Guo Z
    Bull Entomol Res; 2023 Aug; 113(4):574-586. PubMed ID: 37501573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation.
    Ali F; Wharton DA
    PLoS One; 2015; 10(10):e0141810. PubMed ID: 26509788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold tolerance of laboratory-reared Asian longhorned beetles.
    Torson AS; Zhang ML; Ong K; Mohammad L; Smith AJ; Doucet D; Roe AD; Sinclair BJ
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Jul; 257():110957. PubMed ID: 33848644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect.
    Toxopeus J; Koštál V; Sinclair BJ
    Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oatmeal nematode Panagrellus redivivus survives moderately low temperatures by freezing tolerance and cryoprotective dehydration.
    Hayashi M; Wharton DA
    J Comp Physiol B; 2011 Apr; 181(3):335-42. PubMed ID: 21153645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae).
    Cubillos C; Cáceres JC; Villablanca C; Villarreal P; Baeza M; Cabrera R; Graether SP; Veloso C
    J Therm Biol; 2018 May; 74():133-139. PubMed ID: 29801618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus).
    Vo P; Gridi-Papp M
    J Therm Biol; 2017 May; 66():49-55. PubMed ID: 28477909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.
    Kawarasaki Y; Teets NM; Denlinger DL; Lee RE
    J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening.
    Levis NA; Yi SX; Lee RE
    J Exp Biol; 2012 Nov; 215(Pt 21):3768-73. PubMed ID: 22899523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.