These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38281459)

  • 1. The effect of coating characteristics on implant-bone interface mechanics.
    Sánchez E; de Vries E; Matthews D; van der Heide E; Janssen D
    J Biomech; 2024 Jan; 163():111949. PubMed ID: 38281459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment.
    Ramamurti BS; Orr TE; Bragdon CR; Lowenstein JD; Jasty M; Harris WH
    J Biomed Mater Res; 1997 Aug; 36(2):274-80. PubMed ID: 9261690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of bone damage on press-fit mechanics.
    Bishop NE; Höhn JC; Rothstock S; Damm NB; Morlock MM
    J Biomech; 2014 Apr; 47(6):1472-8. PubMed ID: 24503049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK.
    Torstrick FB; Lin ASP; Potter D; Safranski DL; Sulchek TA; Gall K; Guldberg RE
    Biomaterials; 2018 Dec; 185():106-116. PubMed ID: 30236838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of human bone microarchitecture damage in press-fit femoral knee implantation using HR-pQCT and digital volume correlation.
    Rapagna S; Berahmani S; Wyers CE; van den Bergh JPW; Reynolds KJ; Tozzi G; Janssen D; Perilli E
    J Mech Behav Biomed Mater; 2019 Sep; 97():278-287. PubMed ID: 31146201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion.
    Bragdon CR; Burke D; Lowenstein JD; O'Connor DO; Ramamurti B; Jasty M; Harris WH
    J Arthroplasty; 1996 Dec; 11(8):945-51. PubMed ID: 8986573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irregular porous titanium enhances implant stability and bone ingrowth in an intra-articular ovine model.
    Changoor A; Suderman RP; Alshaygy I; Fuhrmann A; Akens MK; Safir O; Grynpas MD; Kuzyk PRT
    J Orthop Res; 2022 Oct; 40(10):2294-2307. PubMed ID: 35146795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur.
    Pal B; Gupta S
    Proc Inst Mech Eng H; 2011 Jun; 225(6):549-61. PubMed ID: 22034739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting friction at the bone - Implant interface in cementless total knee arthroplasty.
    de Vries E; Sánchez E; Janssen D; Matthews D; van der Heide E
    J Mech Behav Biomed Mater; 2022 Apr; 128():105103. PubMed ID: 35121426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.
    Dalton JE; Cook SD; Thomas KA; Kay JF
    J Bone Joint Surg Am; 1995 Jan; 77(1):97-110. PubMed ID: 7822360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model.
    Chen D; Bertollo N; Lau A; Taki N; Nishino T; Mishima H; Kawamura H; Walsh WR
    J Orthop Surg Res; 2011 Nov; 6():56. PubMed ID: 22053991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the debonding process of osseointegrated implants due to coupled adhesion and friction.
    Immel K; Nguyen VH; Haïat G; Sauer RA
    Biomech Model Mechanobiol; 2023 Feb; 22(1):133-158. PubMed ID: 36284076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strontium in the bone-implant interface.
    Vestermark MT
    Dan Med Bull; 2011 May; 58(5):B4286. PubMed ID: 21535993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs.
    Søballe K
    Acta Orthop Scand Suppl; 1993; 255():1-58. PubMed ID: 8237337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surface roughness of hydroxyapatite-coated titanium on the bone-implant interface shear strength.
    Hayashi K; Inadome T; Tsumura H; Nakashima Y; Sugioka Y
    Biomaterials; 1994 Nov; 15(14):1187-91. PubMed ID: 7534485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration.
    Viceconti M; Muccini R; Bernakiewicz M; Baleani M; Cristofolini L
    J Biomech; 2000 Dec; 33(12):1611-8. PubMed ID: 11006385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The limit of tolerable micromotion for implant osseointegration: a systematic review.
    Kohli N; Stoddart JC; van Arkel RJ
    Sci Rep; 2021 May; 11(1):10797. PubMed ID: 34031476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical aspects of dental implants and osseointegration: A narrative review.
    Li J; Jansen JA; Walboomers XF; van den Beucken JJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103574. PubMed ID: 32090904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.