These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Definition of anatomical zero positions for assessing shoulder pose with 3D motion capture during bilateral abduction of the arms. Rettig O; Krautwurst B; Maier MW; Wolf SI BMC Musculoskelet Disord; 2015 Dec; 16():383. PubMed ID: 26646907 [TBL] [Abstract][Full Text] [Related]
4. Mathematical Analysis and Motion Capture System Utilization Method for Standardization Evaluation of Tracking Objectivity of 6-DOF Arm Structure for Rehabilitation Training Exercise Therapy Robot. Seol J; Yoon K; Kim KG Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553186 [TBL] [Abstract][Full Text] [Related]
5. Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment. Lafayette TBG; Kunst VHL; Melo PVS; Guedes PO; Teixeira JMXN; Vasconcelos CR; Teichrieb V; da Gama AEF Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616603 [TBL] [Abstract][Full Text] [Related]
6. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397 [TBL] [Abstract][Full Text] [Related]
7. The validation of a low-cost inertial measurement unit system to quantify simple and complex upper-limb joint angles. Goreham JA; MacLean KFE; Ladouceur M J Biomech; 2022 Mar; 134():111000. PubMed ID: 35217243 [TBL] [Abstract][Full Text] [Related]
8. Validity and reliability of the single camera marker less motion capture system using RGB-D sensor to measure shoulder range-of-motion: A protocol for systematic review and meta-analysis. Lee U; Lee S; Kim SA; Lee JD; Lee S Medicine (Baltimore); 2023 Jun; 102(22):e33893. PubMed ID: 37266604 [TBL] [Abstract][Full Text] [Related]
9. A contactless method to measure real-time finger motion using depth-based pose estimation. Zhu Y; Lu W; Gan W; Hou W Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496 [TBL] [Abstract][Full Text] [Related]
10. Inertial Sensor-to-Segment Calibration for Accurate 3D Joint Angle Calculation for Use in OpenSim. Di Raimondo G; Vanwanseele B; van der Have A; Emmerzaal J; Willems M; Killen BA; Jonkers I Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590949 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of conventional motion capture in measuring hip joint center location and hip rotations during gait, squat, and step-up activities. Lopez S; Johnson C; Frankston N; Ruh E; McClincy M; Anderst W J Biomech; 2024 Apr; 167():112079. PubMed ID: 38599019 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of biomechanical characteristics between the new Tai Chi elastic band exercise for opening and closing movement and elastic band resistance training for the reverse fly movement. Liu M; Li C; Li X; Zhang J; Li H; Li Y; Wei Q; Chen Z; Fu J; Li Y; Cui M; Li L; Zhang P; Huang Y; Ma Y; Xu J; Lyu S; Ma Y PeerJ; 2024; 12():e17839. PubMed ID: 39221286 [TBL] [Abstract][Full Text] [Related]
13. Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume. Bernardina GRD; Monnet T; Cerveri P; Silvatti AP PLoS One; 2019; 14(11):e0224182. PubMed ID: 31714919 [TBL] [Abstract][Full Text] [Related]
14. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles. Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263 [TBL] [Abstract][Full Text] [Related]
15. MarkerLess Motion Capture: ML-MoCap, a low-cost modular multi-camera setup. Geelen JE; Branco MP; Ramsey NF; van der Helm FCT; Mugge W; Schouten AC Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4859-4862. PubMed ID: 34892297 [TBL] [Abstract][Full Text] [Related]
16. Angle Assessment for Upper Limb Rehabilitation: A Novel Light Detection and Ranging (LiDAR)-Based Approach. Klein LC; Chellal AA; Grilo V; Braun J; Gonçalves J; Pacheco MF; Fernandes FP; Monteiro FC; Lima J Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257623 [TBL] [Abstract][Full Text] [Related]
17. Validation of the Perception Neuron system for full-body motion capture. Choo CZY; Chow JY; Komar J PLoS One; 2022; 17(1):e0262730. PubMed ID: 35061781 [TBL] [Abstract][Full Text] [Related]
18. Shoulder Range of Motion Measurement Using Inertial Measurement Unit-Validation with a Robot Arm. Białecka M; Gruszczyński K; Cisowski P; Kaszyński J; Baka C; Lubiatowski P Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420531 [TBL] [Abstract][Full Text] [Related]
19. Accuracy Validation of a Sensor-Based Inertial Measurement Unit and Motion Capture System for Assessment of Lower Limb Muscle Strength in Older Adults-A Novel and Convenient Measurement Approach. Zhu Y; Li H; Wu X; Chen N Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338786 [TBL] [Abstract][Full Text] [Related]
20. Efficient Upper Limb Position Estimation Based on Angular Displacement Sensors for Wearable Devices. Contreras-González AF; Ferre M; Sánchez-Urán MÁ; Sáez-Sáez FJ; Blaya Haro F Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]