BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 38282330)

  • 41. Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation.
    Selewa A; Dohn R; Eckart H; Lozano S; Xie B; Gauchat E; Elorbany R; Rhodes K; Burnett J; Gilad Y; Pott S; Basu A
    Sci Rep; 2020 Jan; 10(1):1535. PubMed ID: 32001747
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding.
    Rosenberg AB; Roco CM; Muscat RA; Kuchina A; Sample P; Yao Z; Graybuck LT; Peeler DJ; Mukherjee S; Chen W; Pun SH; Sellers DL; Tasic B; Seelig G
    Science; 2018 Apr; 360(6385):176-182. PubMed ID: 29545511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PAT-seq: a method to study the integration of 3'-UTR dynamics with gene expression in the eukaryotic transcriptome.
    Harrison PF; Powell DR; Clancy JL; Preiss T; Boag PR; Traven A; Seemann T; Beilharz TH
    RNA; 2015 Aug; 21(8):1502-10. PubMed ID: 26092945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RNA-Seq methods for transcriptome analysis.
    Hrdlickova R; Toloue M; Tian B
    Wiley Interdiscip Rev RNA; 2017 Jan; 8(1):. PubMed ID: 27198714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advanced sequencing-based high-throughput and long-read single-cell transcriptome analysis.
    Huang S; Shi W; Li S; Fan Q; Yang C; Cao J; Wu L
    Lab Chip; 2024 May; 24(10):2601-2621. PubMed ID: 38669201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptome-Wide Analysis of mRNA Adenylation Status in Yeast Using Nanopore Sequencing.
    Krawczyk PS; Tudek A; Mroczek S; Dziembowski A
    Methods Mol Biol; 2024; 2723():193-214. PubMed ID: 37824072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-cell RNA-seq reveals early heterogeneity during aging in yeast.
    Wang J; Sang Y; Jin S; Wang X; Azad GK; McCormick MA; Kennedy BK; Li Q; Wang J; Zhang X; Zhang Y; Huang Y
    Aging Cell; 2022 Nov; 21(11):e13712. PubMed ID: 36181361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Resolution Genome-Wide Occupancy in
    Tebbji F; Khemiri I; Sellam A
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation.
    McNulty R; Sritharan D; Pahng SH; Meisch JP; Liu S; Brennan MA; Saxer G; Hormoz S; Rosenthal AZ
    Nat Microbiol; 2023 May; 8(5):934-945. PubMed ID: 37012420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing.
    Lefrançois P; Euskirchen GM; Auerbach RK; Rozowsky J; Gibson T; Yellman CM; Gerstein M; Snyder M
    BMC Genomics; 2009 Jan; 10():37. PubMed ID: 19159457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.
    Xu G; Strong MJ; Lacey MR; Baribault C; Flemington EK; Taylor CM
    PLoS One; 2014; 9(2):e89445. PubMed ID: 24586784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Full-length isoform concatenation sequencing to resolve cancer transcriptome complexity.
    Wijeratne S; Gonzalez MEH; Roach K; Miller KE; Schieffer KM; Fitch JR; Leonard J; White P; Kelly BJ; Cottrell CE; Mardis ER; Wilson RK; Miller AR
    BMC Genomics; 2024 Jan; 25(1):122. PubMed ID: 38287261
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses.
    Cubillos FA; Brice C; Molinet J; Tisné S; Abarca V; Tapia SM; Oporto C; García V; Liti G; Martínez C
    G3 (Bethesda); 2017 Jun; 7(6):1693-1705. PubMed ID: 28592651
    [No Abstract]   [Full Text] [Related]  

  • 54. Comprehensive structural annotation of Pichia pastoris transcriptome and the response to various carbon sources using deep paired-end RNA sequencing.
    Liang S; Wang B; Pan L; Ye Y; He M; Han S; Zheng S; Wang X; Lin Y
    BMC Genomics; 2012 Dec; 13():738. PubMed ID: 23276294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments.
    Petukhov V; Guo J; Baryawno N; Severe N; Scadden DT; Samsonova MG; Kharchenko PV
    Genome Biol; 2018 Jun; 19(1):78. PubMed ID: 29921301
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing.
    Bayega A; Fahiminiya S; Oikonomopoulos S; Ragoussis J
    Methods Mol Biol; 2018; 1783():209-241. PubMed ID: 29767365
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria.
    Imdahl F; Vafadarnejad E; Homberger C; Saliba AE; Vogel J
    Nat Microbiol; 2020 Oct; 5(10):1202-1206. PubMed ID: 32807892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.
    Zhu M; Dahmen JL; Stacey G; Cheng J
    BMC Bioinformatics; 2013 Sep; 14():278. PubMed ID: 24053776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A platform independent RNA-Seq protocol for the detection of transcriptome complexity.
    Calabrese C; Mangiulli M; Manzari C; Paluscio AM; Caratozzolo MF; Marzano F; Kurelac I; D'Erchia AM; D'Elia D; Licciulli F; Liuni S; Picardi E; Attimonelli M; Gasparre G; Porcelli AM; Pesole G; Sbisà E; Tullo A
    BMC Genomics; 2013 Dec; 14(1):855. PubMed ID: 24308330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-cell RNA sequencing to study vascular diversity and function.
    Ma F; Hernandez GE; Romay M; Iruela-Arispe ML
    Curr Opin Hematol; 2021 May; 28(3):221-229. PubMed ID: 33714967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.