These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 38282708)

  • 1. Advances in electrode interface materials and modification technologies for brain-computer interfaces.
    Jiao Y; Lei M; Zhu J; Chang R; Qu X
    Biomater Transl; 2023; 4(4):213-233. PubMed ID: 38282708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Biocompatibility and Functionality of Neural Interface Devices with Silica Nanoparticles.
    Shi D; Narayanan S; Woeppel K; Cui XT
    Acc Chem Res; 2024 Jun; 57(12):1684-1695. PubMed ID: 38814586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofabrication of a Low Modulus Bioelectroprobe for Neurons to Grow Into.
    Hao Z; Wang S; Zhang K; Zhou J; Li D; He J; Gao L; Wang L
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
    Keogh C
    Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive polymer-enabled conformal neural interface and its application strategies.
    Hu Z; Niu Q; Hsiao BS; Yao X; Zhang Y
    Mater Horiz; 2023 Mar; 10(3):808-828. PubMed ID: 36597872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress of electroactive interface in neural engineering.
    Shan Y; Cui X; Chen X; Li Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e01827. PubMed ID: 35715994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-Induced Periodic Surface Structure Enhances Neuroelectrode Charge Transfer Capabilities and Modulates Astrocyte Function.
    Kelly A; Farid N; Krukiewicz K; Belisle N; Groarke J; Waters EM; Trotier A; Laffir F; Kilcoyne M; O'Connor GM; Biggs MJ
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1449-1461. PubMed ID: 33455378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial.
    Krukiewicz K; Fernandez J; Skorupa M; Więcławska D; Poudel A; Sarasua JR; Quinlan LR; Biggs MJP
    BMC Biomed Eng; 2019; 1():9. PubMed ID: 32903306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research Progress on the Flexibility of an Implantable Neural Microelectrode.
    Zhao H; Liu R; Zhang H; Cao P; Liu Z; Li Y
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography.
    Vallejo-Giraldo C; Krukiewicz K; Calaresu I; Zhu J; Palma M; Fernandez-Yague M; McDowell B; Peixoto N; Farid N; O'Connor G; Ballerini L; Pandit A; Biggs MJP
    Small; 2018 Jul; 14(28):e1800863. PubMed ID: 29862640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale neuroelectrode modification via sub-20 nm silicon nanowires through self-assembly of block copolymers.
    Mokarian-Tabari P; Vallejo-Giraldo C; Fernandez-Yague M; Cummins C; Morris MA; Biggs MJ
    J Mater Sci Mater Med; 2015 Feb; 26(2):120. PubMed ID: 25677116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface.
    Hsieh JC; Alawieh H; Li Y; Iwane F; Zhao L; Anderson R; Abdullah SI; Kevin Tang KW; Wang W; Pyatnitskiy I; Jia Y; Millán JDR; Wang H
    Biosens Bioelectron; 2022 Dec; 218():114756. PubMed ID: 36209529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Electrode Technologies for Noninvasive Brain-Computer Interfaces.
    Lin S; Jiang J; Huang K; Li L; He X; Du P; Wu Y; Liu J; Li X; Huang Z; Zhou Z; Yu Y; Gao J; Lei M; Wu H
    ACS Nano; 2023 Dec; 17(24):24487-24513. PubMed ID: 38064282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion of Neurons and Glial Cells with Nanocolumnar TiN Films for Brain-Machine Interfaces.
    Abend A; Steele C; Jahnke HG; Zink M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress on Microelectrodes in Neural Interfaces.
    Kim GH; Kim K; Lee E; An T; Choi W; Lim G; Shin JH
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30332782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface.
    Rao SS; Han N; Winter JO
    J Biomater Sci Polym Ed; 2011; 22(4-6):611-25. PubMed ID: 20566048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in Research of Flexible MEMS Microelectrodes for Neural Interface.
    Tang LJ; Wang MH; Tian HC; Kang XY; Hong W; Liu JQ
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in conductive hydrogels for neural recording and stimulation.
    Dawit H; Zhao Y; Wang J; Pei R
    Biomater Sci; 2024 May; 12(11):2786-2800. PubMed ID: 38682423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for interface issues and challenges of neural electrodes.
    Liang C; Liu Y; Lu W; Tian G; Zhao Q; Yang D; Sun J; Qi D
    Nanoscale; 2022 Mar; 14(9):3346-3366. PubMed ID: 35179152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.