BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38282974)

  • 1. Predicting evolutionary targets and parameters of gene deletion from expression data.
    Campelo Dos Santos AL; DeGiorgio M; Assis R
    Bioinform Adv; 2024; 4(1):vbae002. PubMed ID: 38282974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting gene expression divergence between single-copy orthologs in two species.
    Piya AA; DeGiorgio M; Assis R
    Genome Biol Evol; 2023 May; 15(5):. PubMed ID: 37170892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Retention Mechanisms and Evolutionary Parameters of Duplicate Genes from Their Expression Data.
    DeGiorgio M; Assis R
    Mol Biol Evol; 2021 Mar; 38(3):1209-1224. PubMed ID: 33045078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Out of the testis, into the ovary: biased outcomes of gene duplication and deletion in Drosophila.
    Assis R
    Evolution; 2019 Sep; 73(9):1850-1862. PubMed ID: 31418820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSEA-SDBE: A gene selection method for breast cancer classification based on GSEA and analyzing differences in performance metrics.
    Ai H
    PLoS One; 2022; 17(4):e0263171. PubMed ID: 35472078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting genome-wide redundancy using machine learning.
    Chen HW; Bandyopadhyay S; Shasha DE; Birnbaum KD
    BMC Evol Biol; 2010 Nov; 10():357. PubMed ID: 21087504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invariant transformers of Robinson and Foulds distance matrices for Convolutional Neural Network.
    Tahiri N; Veriga A; Koshkarov A; Morozov B
    J Bioinform Comput Biol; 2022 Aug; 20(4):2250012. PubMed ID: 35798684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-end learning of evolutionary models to find coding regions in genome alignments.
    Mertsch D; Stanke M
    Bioinformatics; 2022 Mar; 38(7):1857-1862. PubMed ID: 35060608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Adverse Drug Reaction Linked to Protein Targets Using Network-Based Information and Machine Learning.
    Galletti C; Aguirre-Plans J; Oliva B; Fernandez-Fuentes N
    Front Bioinform; 2022; 2():906644. PubMed ID: 36304303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive Models of Genetic Redundancy in Arabidopsis thaliana.
    Cusack SA; Wang P; Lotreck SG; Moore BM; Meng F; Conner JK; Krysan PJ; Lehti-Shiu MD; Shiu SH
    Mol Biol Evol; 2021 Jul; 38(8):3397-3414. PubMed ID: 33871641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of novel therapeutic targets using gene-disease association data.
    Ferrero E; Dunham I; Sanseau P
    J Transl Med; 2017 Aug; 15(1):182. PubMed ID: 28851378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIFFUSE: predicting isoform functions from sequences and expression profiles via deep learning.
    Chen H; Shaw D; Zeng J; Bu D; Jiang T
    Bioinformatics; 2019 Jul; 35(14):i284-i294. PubMed ID: 31510699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype.
    Jeong D; Koo B; Oh M; Kim TB; Kim S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37740295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AllesTM: predicting multiple structural features of transmembrane proteins.
    Hönigschmid P; Breimann S; Weigl M; Frishman D
    BMC Bioinformatics; 2020 Jun; 21(1):242. PubMed ID: 32532211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAPRIB: a user-friendly tool to study amino acid changes and selection for the exploration of intra-genus evolution.
    Guerra Maldonado JF; Vincent AT; Chenal M; Veyrier FJ
    BMC Genomics; 2020 Nov; 21(1):832. PubMed ID: 33243176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting gene essentiality in
    Campos TL; Korhonen PK; Sternberg PW; Gasser RB; Young ND
    Comput Struct Biotechnol J; 2020; 18():1093-1102. PubMed ID: 32489524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The layered costs and benefits of translational redundancy.
    Raval PK; Ngan WY; Gallie J; Agashe D
    Elife; 2023 Mar; 12():. PubMed ID: 36862572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IsoResolve: predicting splice isoform functions by integrating gene and isoform-level features with domain adaptation.
    Li HD; Yang C; Zhang Z; Yang M; Wu FX; Omenn GS; Wang J
    Bioinformatics; 2021 May; 37(4):522-530. PubMed ID: 32966552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.