These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38283329)

  • 1. Efficiency estimates for electromicrobial production of branched-chain hydrocarbons.
    Sheppard TJ; Specht DA; Barstow B
    iScience; 2024 Jan; 27(1):108773. PubMed ID: 38283329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper limit efficiency estimates for electromicrobial production of drop-in jet fuels.
    Sheppard TJ; Specht DA; Barstow B
    Bioelectrochemistry; 2023 Dec; 154():108506. PubMed ID: 37473694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Deoxygenation of the Oil and Biodiesel of Licuri (
    Araújo PHM; Maia AS; Cordeiro AMTM; Gondim AD; Santos NA
    ACS Omega; 2019 Oct; 4(14):15849-15855. PubMed ID: 31592170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.
    Sacia ER; Balakrishnan M; Deaner MH; Goulas KA; Toste FD; Bell AT
    ChemSusChem; 2015 May; 8(10):1726-36. PubMed ID: 25891778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Techno-Economic Assessment of Electromicrobial Production of
    Adams JD; Clark DS
    Environ Sci Technol; 2024 Apr; 58(17):7302-7313. PubMed ID: 38621294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids.
    Huq NA; Hafenstine GR; Huo X; Nguyen H; Tifft SM; Conklin DR; Stück D; Stunkel J; Yang Z; Heyne JS; Wiatrowski MR; Zhang Y; Tao L; Zhu J; McEnally CS; Christensen ED; Hays C; Van Allsburg KM; Unocic KA; Meyer HM; Abdullah Z; Vardon DR
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33723013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Constraints on Electromicrobial Protein Production.
    Wise L; Marecos S; Randolph K; Hassan M; Nshimyumukiza E; Strouse J; Salimijazi F; Barstow B
    Front Bioeng Biotechnol; 2022; 10():820384. PubMed ID: 35265598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks.
    Geiselman GM; Kirby J; Landera A; Otoupal P; Papa G; Barcelos C; Sundstrom ER; Das L; Magurudeniya HD; Wehrs M; Rodriguez A; Simmons BA; Magnuson JK; Mukhopadhyay A; Lee TS; George A; Gladden JM
    Microb Cell Fact; 2020 Nov; 19(1):208. PubMed ID: 33183275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage.
    Lobato MR; Cazarolli JC; Rios RDF; D' Alessandro EB; Lutterbach MTS; Filho NRA; Pasa VMD; Aranda D; Scorza PR; Bento FM
    Braz J Microbiol; 2023 Sep; 54(3):1603-1621. PubMed ID: 37584891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis, regulation, and engineering of microbially produced branched biofuels.
    Bai W; Geng W; Wang S; Zhang F
    Biotechnol Biofuels; 2019; 12():84. PubMed ID: 31011367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in one-stage conversion of lipid-based biomass-derived oils into fuel components - aromatics and isomerized alkanes.
    Yeletsky PM; Kukushkin RG; Yakovlev VA; Chen BH
    Fuel (Lond); 2020 Oct; 278():118255. PubMed ID: 32834073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refining and blending of aviation turbine fuels.
    White RD
    Drug Chem Toxicol; 1999 Feb; 22(1):143-53. PubMed ID: 10189575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of preferential access to land and clean energy for Sustainable Aviation Fuels.
    Becken S; Mackey B; Lee DS
    Sci Total Environ; 2023 Aug; 886():163883. PubMed ID: 37164072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).
    van der Giesen C; Kleijn R; Kramer GJ
    Environ Sci Technol; 2014 Jun; 48(12):7111-21. PubMed ID: 24832016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
    Falter C; Batteiger V; Sizmann A
    Environ Sci Technol; 2016 Jan; 50(1):470-7. PubMed ID: 26641878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Civil aviation emissions in Argentina.
    Puliafito SE
    Sci Total Environ; 2023 Apr; 869():161675. PubMed ID: 36669658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renewable jet fuel.
    Kallio P; Pásztor A; Akhtar MK; Jones PR
    Curr Opin Biotechnol; 2014 Apr; 26():50-5. PubMed ID: 24679258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization.
    Jing L; El-Houjeiri HM; Monfort JC; Littlefield J; Al-Qahtani A; Dixit Y; Speth RL; Brandt AR; Masnadi MS; MacLean HL; Peltier W; Gordon D; Bergerson JA
    Nat Commun; 2022 Dec; 13(1):7853. PubMed ID: 36543764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.
    Lobo P; Hagen DE; Whitefield PD
    Environ Sci Technol; 2011 Dec; 45(24):10744-9. PubMed ID: 22043875
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.