These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 38283851)
1. Combining Off-flow, a Nextflow-coded program, and whole genome sequencing reveals unintended genetic variation in CRISPR/Cas-edited iPSCs. Shum C; Han SY; Thiruvahindrapuram B; Wang Z; de Rijke J; Zhang B; Sundberg M; Chen C; Buttermore ED; Makhortova N; Howe J; Sahin M; Scherer SW Comput Struct Biotechnol J; 2024 Dec; 23():638-647. PubMed ID: 38283851 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic Stem and Progenitor Cell Clones. Smith RH; Chen YC; Seifuddin F; Hupalo D; Alba C; Reger R; Tian X; Araki D; Dalgard CL; Childs RW; Pirooznia M; Larochelle A Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33322084 [TBL] [Abstract][Full Text] [Related]
3. Detection of Deleterious On-Target Effects after HDR-Mediated CRISPR Editing. Weisheit I; Kroeger JA; Malik R; Klimmt J; Crusius D; Dannert A; Dichgans M; Paquet D Cell Rep; 2020 May; 31(8):107689. PubMed ID: 32460021 [TBL] [Abstract][Full Text] [Related]
4. Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping. Weisheit I; Kroeger JA; Malik R; Wefers B; Lichtner P; Wurst W; Dichgans M; Paquet D Nat Protoc; 2021 Mar; 16(3):1714-1739. PubMed ID: 33597771 [TBL] [Abstract][Full Text] [Related]
5. Homozygous might be hemizygous: CRISPR/Cas9 editing in iPSCs results in detrimental on-target defects that escape standard quality controls. Simkin D; Papakis V; Bustos BI; Ambrosi CM; Ryan SJ; Baru V; Williams LA; Dempsey GT; McManus OB; Landers JE; Lubbe SJ; George AL; Kiskinis E Stem Cell Reports; 2022 Apr; 17(4):993-1008. PubMed ID: 35276091 [TBL] [Abstract][Full Text] [Related]
6. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Lyu C; Shen J; Wang R; Gu H; Zhang J; Xue F; Liu X; Liu W; Fu R; Zhang L; Li H; Zhang X; Cheng T; Yang R; Zhang L Stem Cell Res Ther; 2018 Apr; 9(1):92. PubMed ID: 29625575 [TBL] [Abstract][Full Text] [Related]
7. Identifying genome-wide off-target sites of CRISPR RNA-guided nucleases and deaminases with Digenome-seq. Kim D; Kang BC; Kim JS Nat Protoc; 2021 Feb; 16(2):1170-1192. PubMed ID: 33462439 [TBL] [Abstract][Full Text] [Related]
8. COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Cradick TJ; Qiu P; Lee CM; Fine EJ; Bao G Mol Ther Nucleic Acids; 2014 Dec; 3(12):e214. PubMed ID: 25462530 [TBL] [Abstract][Full Text] [Related]
9. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Tang X; Liu G; Zhou J; Ren Q; You Q; Tian L; Xin X; Zhong Z; Liu B; Zheng X; Zhang D; Malzahn A; Gong Z; Qi Y; Zhang T; Zhang Y Genome Biol; 2018 Jul; 19(1):84. PubMed ID: 29973285 [TBL] [Abstract][Full Text] [Related]
11. Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells. Molugu K; Khajanchi N; Lazzarotto CR; Tsai SQ; Saha K CRISPR J; 2023 Oct; 6(5):473-485. PubMed ID: 37676985 [TBL] [Abstract][Full Text] [Related]
12. CRISPRitz: rapid, high-throughput and variant-aware in silico off-target site identification for CRISPR genome editing. Cancellieri S; Canver MC; Bombieri N; Giugno R; Pinello L Bioinformatics; 2020 Apr; 36(7):2001-2008. PubMed ID: 31764961 [TBL] [Abstract][Full Text] [Related]
13. Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine. Wang X; Tu M; Wang Y; Yin W; Zhang Y; Wu H; Gu Y; Li Z; Xi Z; Wang X Hortic Res; 2021 May; 8(1):114. PubMed ID: 33931634 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Off-Target Mutations in CRISPR-Edited Rice Plants Using Whole-Genome Sequencing. Liu G; Qi Y; Zhang T Methods Mol Biol; 2021; 2238():145-172. PubMed ID: 33471330 [TBL] [Abstract][Full Text] [Related]
15. Efficient and allele-specific genome editing of disease loci in human iPSCs. Smith C; Abalde-Atristain L; He C; Brodsky BR; Braunstein EM; Chaudhari P; Jang YY; Cheng L; Ye Z Mol Ther; 2015 Mar; 23(3):570-7. PubMed ID: 25418680 [TBL] [Abstract][Full Text] [Related]
16. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones. Watanabe S; Sakurai T; Nakamura S; Miyoshi K; Sato M Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29617297 [TBL] [Abstract][Full Text] [Related]
18. Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells. Ma N; Zhang JZ; Itzhaki I; Zhang SL; Chen H; Haddad F; Kitani T; Wilson KD; Tian L; Shrestha R; Wu H; Lam CK; Sayed N; Wu JC Circulation; 2018 Dec; 138(23):2666-2681. PubMed ID: 29914921 [TBL] [Abstract][Full Text] [Related]
19. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Fu Y; Reyon D; Joung JK Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334 [TBL] [Abstract][Full Text] [Related]
20. A simple and effective genotyping workflow for rapid detection of CRISPR genome editing. Wang L; Wang J; Feng D; Wang B; Jahan-Mihan Y; Wang Y; Bi Y; Lim D; Ji B Am J Physiol Gastrointest Liver Physiol; 2024 Apr; 326(4):G473-G481. PubMed ID: 38410866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]