These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 38283918)
1. Harnessing decellularised extracellular matrix microgels into modular bioinks for extrusion-based bioprinting with good printability and high post-printing cell viability. Chu H; Zhang K; Rao Z; Song P; Lin Z; Zhou J; Yang L; Quan D; Bai Y Biomater Transl; 2023; 4(2):115-127. PubMed ID: 38283918 [TBL] [Abstract][Full Text] [Related]
2. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
3. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848 [TBL] [Abstract][Full Text] [Related]
4. Optimization of methacrylated gelatin /layered double hydroxides nanocomposite cell-laden hydrogel bioinks with high printability for 3D extrusion bioprinting. Alarçin E; İzbudak B; Yüce Erarslan E; Domingo S; Tutar R; Titi K; Kocaaga B; Guner FS; Bal-Öztürk A J Biomed Mater Res A; 2023 Feb; 111(2):209-223. PubMed ID: 36213938 [TBL] [Abstract][Full Text] [Related]
5. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Shi H; Li Y; Xu K; Yin J Mater Today Bio; 2023 Dec; 23():100799. PubMed ID: 37766893 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
7. Printing GelMA bioinks: a strategy for building Fu Z; Hai N; Zhong Y; Sun W Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447206 [TBL] [Abstract][Full Text] [Related]
8. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
9. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
10. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. Feng Q; Li D; Li Q; Li H; Wang Z; Zhu S; Lin Z; Cao X; Dong H ACS Appl Mater Interfaces; 2022 Apr; 14(13):15653-15666. PubMed ID: 35344348 [TBL] [Abstract][Full Text] [Related]
11. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
12. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Song K; Ren B; Zhai Y; Chai W; Huang Y Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234 [TBL] [Abstract][Full Text] [Related]
14. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
15. 3D Bioprinting of Methylcellulose/Gelatin-Methacryloyl (MC/GelMA) Bioink with High Shape Integrity. Rastin H; Ormsby RT; Atkins GJ; Losic D ACS Appl Bio Mater; 2020 Mar; 3(3):1815-1826. PubMed ID: 35021671 [TBL] [Abstract][Full Text] [Related]
16. Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices. Davern JW; Hipwood L; Bray LJ; Meinert C; Klein TJ APL Bioeng; 2024 Mar; 8(1):016101. PubMed ID: 38204454 [TBL] [Abstract][Full Text] [Related]
17. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
18. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks. Liu W; Heinrich MA; Zhou Y; Akpek A; Hu N; Liu X; Guan X; Zhong Z; Jin X; Khademhosseini A; Zhang YS Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28464555 [TBL] [Abstract][Full Text] [Related]
19. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Wu T; Gao YY; Su J; Tang XN; Chen Q; Ma LW; Zhang JJ; Wu JM; Wang SX Climacteric; 2022 Apr; 25(2):170-178. PubMed ID: 33993814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]