BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38284146)

  • 1. Improving electrochemical hybridization assays with restriction enzymes.
    Zhou X; Zamani M; Austin K; De Bock M; Chaj Ullola J; Riki S; Furst AL
    Chem Commun (Camb); 2024 Feb; 60(14):1948-1951. PubMed ID: 38284146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive Electrochemical Detection of Mutated Viral RNAs with Single-Nucleotide Resolution Using a Nanoporous Electrode Array (NPEA).
    Yoon J; Conley BM; Shin M; Choi JH; Bektas CK; Choi JW; Lee KB
    ACS Nano; 2022 Apr; 16(4):5764-5777. PubMed ID: 35362957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review.
    Wang Z; Yu R; Zeng H; Wang X; Luo S; Li W; Luo X; Yang T
    Mikrochim Acta; 2019 Jun; 186(7):405. PubMed ID: 31183569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel and sensitive electrochemical/fluorescent dual-mode biosensing platform based on the cascaded cyclic amplification of enzyme-free DDSA and functional nucleic acids.
    Xue Y; Xie H; Wang Y; Feng S; Sun J; Huang J; Yang X
    Biosens Bioelectron; 2022 Dec; 218():114762. PubMed ID: 36195033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultrafast ratiometric electrochemical biosensor based on potential-assisted hybridization for nucleic acids detection.
    Wang X; Li Y; Zhao M; Wang H; Wan Q; Shi C; Ma C
    Anal Chim Acta; 2022 Jun; 1211():339915. PubMed ID: 35589227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface immobilization strategies for the development of electrochemical nucleic acid sensors.
    Meng X; O'Hare D; Ladame S
    Biosens Bioelectron; 2023 Oct; 237():115440. PubMed ID: 37406480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridization chain reaction performed on a metal surface as a means of signal amplification in SPR and electrochemical biosensors.
    Spiga FM; Bonyár A; Ring B; Onofri M; Vinelli A; Sántha H; Guiducci C; Zuccheri G
    Biosens Bioelectron; 2014 Apr; 54():102-8. PubMed ID: 24252766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitronyl nitroxide monoradical TEMPO as new electrochemical label for ultrasensitive detection of nucleic acids.
    Wang C; Liu J; Kong J; Zhang X
    Anal Chim Acta; 2020 Nov; 1136():19-24. PubMed ID: 33081944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous-Gold-Based Electrode Morphology Libraries for Investigating Structure-Property Relationships in Nucleic Acid Based Electrochemical Biosensors.
    Matharu Z; Daggumati P; Wang L; Dorofeeva TS; Li Z; Seker E
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):12959-12966. PubMed ID: 28094510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal Dynamic DNA Assembly-Programmed Surface Hybridization Effect for Single-Step, Reusable, and Amplified Electrochemical Nucleic Acid Biosensing.
    Liu S; Fang L; Wang Y; Wang L
    Anal Chem; 2017 Mar; 89(5):3108-3115. PubMed ID: 28194961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Different Strategies for the Development of Highly Sensitive Electrochemical Nucleic Acid Biosensors Using Neither Nanomaterials nor Nucleic Acid Amplification.
    Ruiz-Valdepeñas Montiel V; Povedano E; Vargas E; Torrente-Rodríguez RM; Pedrero M; Reviejo AJ; Campuzano S; Pingarrón JM
    ACS Sens; 2018 Jan; 3(1):211-221. PubMed ID: 29282977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids.
    Ferapontova EE
    Annu Rev Anal Chem (Palo Alto Calif); 2018 Jun; 11(1):197-218. PubMed ID: 29894229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branched DNA-Based Electrochemical Biosensor for Sensitive Nucleic Acids Analysis with Gold Nanoparticles as Amplifier.
    Zhang Z; Shang C; Hu C; Liu Y; Han J
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Detection of Viral Nucleic Acids by DNA Nanolock-Based Porous Electrode Device.
    Huang Z; Wang W; Wang Y; Wang H; Pang Y; Yuan Q; Tan J; Tan W
    Anal Chem; 2023 Nov; 95(45):16668-16676. PubMed ID: 37910393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules.
    Wang CF; Sun XY; Su M; Wang YP; Lv YK
    Analyst; 2020 Mar; 145(5):1550-1562. PubMed ID: 31951223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A T-rich nucleic acid-enhanced electrochemical platform based on electroactive silver nanoclusters for miRNA detection.
    Zhao Y; Lu C; Zhao XE; Kong W; Zhu S; Qu F
    Biosens Bioelectron; 2022 Jul; 208():114215. PubMed ID: 35358774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic Enrichment and Label-Free Electrochemical Detection of Nucleic Acids by Conduction of Ions along the Surface of Bioconjugated Beads.
    Berzina B; Peramune U; Kim S; Saurabh K; Claus EL; Strait ME; Ganapathysubramanian B; Anand RK
    ACS Sens; 2023 Mar; 8(3):1173-1182. PubMed ID: 36800317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximity sensitive detection of microRNAs using electrochemical impedance spectroscopy biosensors.
    Roychoudhury A; Dear JW; Bachmann TT
    Biosens Bioelectron; 2022 Sep; 212():114404. PubMed ID: 35635974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.