These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3828445)

  • 21. Fixation of distal femoral osteotomies with self-reinforced polymer/bioactive glass rods: an experimental study on rabbits.
    Pyhältö T; Lapinsuo M; Pätiälä H; Pelto M; Törmälä P; Rokkanen P
    Biomaterials; 2005 Feb; 26(6):645-54. PubMed ID: 15282142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fixation of distal femoral osteotomies with self-reinforced poly(desamino tyrosyl-tyrosine ethyl ester carbonate) rods: an experimental study on rats.
    Pyhältö T; Lapinsuo M; Pätiälä H; Pelto M; Törmälä P; Rokkanen P
    J Orthop Sci; 2002; 7(5):549-56. PubMed ID: 12355129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strength retention of self-reinforced polyglycolide membrane: an experimental study.
    Ashammakhi N; Mäkelä EA; Vihtonen K; Rokkanen P; Kuisma H; Törmälä P
    Biomaterials; 1995 Jan; 16(2):135-8. PubMed ID: 7734647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers.
    Vallittu PK
    J Prosthet Dent; 1999 Mar; 81(3):318-26. PubMed ID: 10050121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-high strength, self-reinforced absorbable polymeric composites for applications in different disciplines of surgery.
    Törmälä P
    Clin Mater; 1993; 13(1-4):35-40. PubMed ID: 10146241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (Maxon) and polydioxanone (PDS) sutures. An in vitro study.
    Mäkelä P; Pohjonen T; Törmälä P; Waris T; Ashammakhi N
    Biomaterials; 2002 Jun; 23(12):2587-92. PubMed ID: 12033607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation behaviour of self-reinforced 80L/20G PLGA devices in vitro.
    Välimaa T; Laaksovirta S
    Biomaterials; 2004; 25(7-8):1225-32. PubMed ID: 14643596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradable polyglycolide rods for the internal fixation of displaced bimalleolar fractures.
    Böstman O; Hirvensalo E; Vainionpää S; Vihtonen K; Tórmälä P; Rokkanen P
    Int Orthop; 1990; 14(1):1-8. PubMed ID: 2160439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Absorbable SR-PGA implant in orthopaedics: preliminary results of treatment of fractures].
    Liu Y; Rong G
    Zhonghua Wai Ke Za Zhi; 1995 Jan; 33(1):51-3. PubMed ID: 7774448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Treatment of intra-articular fracture with absorbable screws and rods].
    Guo W; Liu K; Zhuang G; Chen Z; Guo T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Mar; 20(3):268-71. PubMed ID: 16579239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Use of Biofix C for stabilizing medial ankle fractures].
    Leixnering M; Moser KL; Poigenfürst J
    Aktuelle Traumatol; 1989 Jun; 19(3):113-5. PubMed ID: 2568080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradable self-reinforced polyglycolide screws and rods in the fixation of displaced malleolar fractures in the elderly. A comparison with metallic implants.
    Kankare J; Partio EK; Hirvensalo E; Böstman O; Rokkanen P
    Ann Chir Gynaecol; 1996; 85(3):263-70. PubMed ID: 8950450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue response to polyglycolide and polylevolactide pins in osteotomized cancellous bone.
    Nordström P; Pihlajamäki H; Toivonen T; Törmälä P; Rokkanen P
    Clin Orthop Relat Res; 2001 Jan; (382):247-57. PubMed ID: 11153995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New multifunctional anti-osteolytic releasing bioabsorbable implant.
    Huolman R; Ashammakhi N
    J Craniofac Surg; 2007 Mar; 18(2):295-301. PubMed ID: 17414278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Absorbable fixation of femoral head fractures. A prospective study of six cases.
    Jukkala-Partio K; Partio EK; Hirvensalo E; Rokkanen P
    Ann Chir Gynaecol; 1998; 87(1):44-8. PubMed ID: 9598230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioabsorbable fixation in orthopaedic surgery and traumatology.
    Rokkanen PU; Böstman O; Hirvensalo E; Mäkelä EA; Partio EK; Pätiälä H; Vainionpää SI; Vihtonen K; Törmälä P
    Biomaterials; 2000 Dec; 21(24):2607-13. PubMed ID: 11071610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing and properties of two different poly (ortho esters).
    Kellomäki M; Heller J; Törmälä P
    J Mater Sci Mater Med; 2000 Jun; 11(6):345-55. PubMed ID: 15348015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of retentive systems for composites used as alternatives to porcelain in fixed partial dentures.
    Andrade Tarozzo LS; Chiarello De Mattos Mda G; Faria Ribeiro R; Semprini M
    J Prosthet Dent; 2003 Jun; 89(6):572-8. PubMed ID: 12815351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.