These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3828445)

  • 61. Fixation of distal femoral osteotomy with an intramedullary rod: early failure of carbon fibre composite implant in rabbits.
    Kettunen J; Mäkelä A; Miettinen H; Nevalainen T; Heikkilä M; Törmälä P; Rokkanen P
    J Biomater Sci Polym Ed; 1999; 10(7):715-28. PubMed ID: 10426228
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Restoration of tissue components after insertion of absorbable fracture fixation devices of polyglycolide through the articular surface: an experimental study in the distal rabbit femur.
    Böstman O; Päivärinta U
    J Orthop Res; 1994 May; 12(3):403-11. PubMed ID: 8207594
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep.
    Weiler A; Helling HJ; Kirch U; Zirbes TK; Rehm KE
    J Bone Joint Surg Br; 1996 May; 78(3):369-76. PubMed ID: 8636168
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Absorbable devices in the fixation of fractures.
    Rokkanen P; Böstman O; Vainionpää S; Makela EA; Hirvensalo E; Partio EK; Vihtonen K; Pätiälä H; Törmälä P
    J Trauma; 1996 Mar; 40(3 Suppl):S123-7. PubMed ID: 8606392
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Processing and characterization of absorbable polylactide polymers for use in surgical implants.
    Andriano KP; Pohjonen T; Törmälä P
    J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Absorbable polyglycolide devices in trauma and bone surgery.
    Ashammakhi N; Rokkanen P
    Biomaterials; 1997 Jan; 18(1):3-9. PubMed ID: 9003889
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bioabsorbable fixation in the treatment of proximal tibial osteotomies and fractures. A clinical study.
    Tuompo P; Partio E; Rokkanen P
    Ann Chir Gynaecol; 1999; 88(1):66-72. PubMed ID: 10230686
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biodegradable osteosynthesis in mandibular advancement: a pilot study.
    Bouwman JP; Tuinzing DB
    Br J Oral Maxillofac Surg; 1999 Feb; 37(1):6-10. PubMed ID: 10203214
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Resistance to fracture and structural characteristics of different fiber reinforced post systems.
    Seefeld F; Wenz HJ; Ludwig K; Kern M
    Dent Mater; 2007 Mar; 23(3):265-71. PubMed ID: 16519929
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of the tissue response to absorbable self-reinforced polylactide screws and metallic screws in the fixation of cancellous bone osteotomies: an experimental study on the rabbit distal femur.
    Viljanen JT; Pihlajamäki HK; Törmälä PO; Rokkanen PU
    J Orthop Res; 1997 May; 15(3):398-407. PubMed ID: 9246086
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of glass fiber layering on the flexural strength of microfill and hybrid composites.
    Eronat N; Candan U; Türkün M
    J Esthet Restor Dent; 2009; 21(3):171-8; discussion 179-81. PubMed ID: 19508260
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.
    Meriç G; Ruyter IE
    Dent Mater; 2007 Sep; 23(9):1157-63. PubMed ID: 17118440
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture.
    Hu Q; Li B; Wang M; Shen J
    Biomaterials; 2004 Feb; 25(5):779-85. PubMed ID: 14609666
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of veneering composite composition on the efficacy of fiber-reinforced restorations (FRR).
    Ellakwa A; Shortall A; Shehata M; Marquis P
    Oper Dent; 2001; 26(5):467-75. PubMed ID: 11551011
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Composite resin reinforced with pre-tensioned glass fibers. Influence of prestressing on flexural properties.
    Schlichting LH; de Andrada MA; Vieira LC; de Oliveira Barra GM; Magne P
    Dent Mater; 2010 Feb; 26(2):118-25. PubMed ID: 19819003
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Release of chlorhexidine digluconate and flexural properties of glass fibre reinforced provisional fixed partial denture polymer.
    Lahdenperä MS; Puska MA; Alander PM; Waltimo T; Vallittu PK
    J Mater Sci Mater Med; 2004 Dec; 15(12):1349-53. PubMed ID: 15747188
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo.
    Laitinen O; Törmälä P; Taurio R; Skutnabb K; Saarelainen K; Iivonen T; Vainionpää S
    Biomaterials; 1992; 13(14):1012-6. PubMed ID: 1472587
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods.
    Matsusue Y; Yamamuro T; Oka M; Shikinami Y; Hyon SH; Ikada Y
    J Biomed Mater Res; 1992 Dec; 26(12):1553-67. PubMed ID: 1484062
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of silica coating and silanization on flexural and composite-resin bond strengths of zirconia posts: An in vitro study.
    Xible AA; de Jesus Tavarez RR; de Araujo Cdos R; Bonachela WC
    J Prosthet Dent; 2006 Mar; 95(3):224-9. PubMed ID: 16543020
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix.
    Bae JM; Kim KN; Hattori M; Hasegawa K; Yoshinari M; Kawada E; Oda Y
    Int J Prosthodont; 2001; 14(1):33-9. PubMed ID: 11842902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.