BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38284491)

  • 21. Crystal structure of monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8.
    Omi R; Goto M; Miyahara I; Manzoku M; Ebihara A; Hirotsu K
    Biochemistry; 2007 Nov; 46(44):12618-27. PubMed ID: 17929834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural determinants of substrate recognition in the HAD superfamily member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) .
    Nguyen HH; Wang L; Huang H; Peisach E; Dunaway-Mariano D; Allen KN
    Biochemistry; 2010 Feb; 49(6):1082-92. PubMed ID: 20050614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study.
    Sinha S; Lynn AM; Desai DK
    BMC Bioinformatics; 2020 Oct; 21(1):466. PubMed ID: 33076816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery and analysis of cofactor-dependent phosphoglycerate mutase homologs as novel phosphoserine phosphatases in Hydrogenobacter thermophilus.
    Chiba Y; Oshima K; Arai H; Ishii M; Igarashi Y
    J Biol Chem; 2012 Apr; 287(15):11934-41. PubMed ID: 22337887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily.
    Thaller MC; Schippa S; Rossolini GM
    Protein Sci; 1998 Jul; 7(7):1647-52. PubMed ID: 9684901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from
    Quaye JA; Gadda G
    Biochemistry; 2020 Dec; 59(51):4833-4844. PubMed ID: 33301690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and functional analysis of Rv3214 from Mycobacterium tuberculosis, a protein with conflicting functional annotations, leads to its characterization as a phosphatase.
    Watkins HA; Baker EN
    J Bacteriol; 2006 May; 188(10):3589-99. PubMed ID: 16672613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5'-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme.
    Haruyama K; Nakai T; Miyahara I; Hirotsu K; Mizuguchi H; Hayashi H; Kagamiyama H
    Biochemistry; 2001 Apr; 40(15):4633-44. PubMed ID: 11294630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery and analysis of a novel type of the serine biosynthetic enzyme phosphoserine phosphatase in Thermus thermophilus.
    Chiba Y; Yoshida A; Shimamura S; Kameya M; Tomita T; Nishiyama M; Takai K
    FEBS J; 2019 Feb; 286(4):726-736. PubMed ID: 30430741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A nuclear magnetic resonance based approach to accurate functional annotation of putative enzymes in the methanogen Methanosarcina acetivorans.
    Chen Y; Apolinario E; Brachova L; Kelman Z; Li Z; Nikolau BJ; Showman L; Sowers K; Orban J
    BMC Genomics; 2011 Jun; 12 Suppl 1(Suppl 1):S7. PubMed ID: 21810209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis.
    Beresford NJ; Saville C; Bennett HJ; Roberts IS; Tabernero L
    BMC Genomics; 2010 Aug; 11():457. PubMed ID: 20678187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural studies of the catalytic reaction pathway of a hyperthermophilic histidinol-phosphate aminotransferase.
    Fernandez FJ; Vega MC; Lehmann F; Sandmeier E; Gehring H; Christen P; Wilmanns M
    J Biol Chem; 2004 May; 279(20):21478-88. PubMed ID: 15007066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate.
    Sivaraman J; Li Y; Larocque R; Schrag JD; Cygler M; Matte A
    J Mol Biol; 2001 Aug; 311(4):761-76. PubMed ID: 11518529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.
    Kuznetsova E; Nocek B; Brown G; Makarova KS; Flick R; Wolf YI; Khusnutdinova A; Evdokimova E; Jin K; Tan K; Hanson AD; Hasnain G; Zallot R; de Crécy-Lagard V; Babu M; Savchenko A; Joachimiak A; Edwards AM; Koonin EV; Yakunin AF
    J Biol Chem; 2015 Jul; 290(30):18678-98. PubMed ID: 26071590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Library Selection with a Randomized Repertoire of (βα)
    Rohweder B; Lehmann G; Eichner N; Polen T; Rajendran C; Ruperti F; Linde M; Treiber T; Jung O; Dettmer K; Meister G; Bott M; Gronwald W; Sterner R
    Biochemistry; 2019 Oct; 58(41):4207-4217. PubMed ID: 31557000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Re-annotation of protein-coding genes in 10 complete genomes of Neisseriaceae family by combining similarity-based and composition-based methods.
    Guo FB; Xiong L; Teng JL; Yuen KY; Lau SK; Woo PC
    DNA Res; 2013 Jun; 20(3):273-86. PubMed ID: 23571676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An
    Pramanik K; Ghosh PK; Ray S; Sarkar A; Mitra S; Maiti TK
    J Genet Eng Biotechnol; 2017 Dec; 15(2):527-537. PubMed ID: 30647696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospecting for unannotated enzymes: discovery of a 3',5'-nucleotide bisphosphate phosphatase within the amidohydrolase superfamily.
    Cummings JA; Vetting M; Ghodge SV; Xu C; Hillerich B; Seidel RD; Almo SC; Raushel FM
    Biochemistry; 2014 Jan; 53(3):591-600. PubMed ID: 24401123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and computational investigation of enzyme functional annotations uncovers misannotation in the EC 1.1.3.15 enzyme class.
    Rembeza E; Engqvist MKM
    PLoS Comput Biol; 2021 Sep; 17(9):e1009446. PubMed ID: 34555022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The thrH gene product of Pseudomonas aeruginosa is a dual activity enzyme with a novel phosphoserine:homoserine phosphotransferase activity.
    Singh SK; Yang K; Karthikeyan S; Huynh T; Zhang X; Phillips MA; Zhang H
    J Biol Chem; 2004 Mar; 279(13):13166-73. PubMed ID: 14699121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.