BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38284491)

  • 41. Identification of Novel Abiotic Stress Proteins in Triticum aestivum Through Functional Annotation of Hypothetical Proteins.
    Gupta S; Singh Y; Kumar H; Raj U; Rao AR; Varadwaj PK
    Interdiscip Sci; 2018 Mar; 10(1):205-220. PubMed ID: 27421996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An array of basic residues is essential for the nucleolytic activity of the PHP domain of bacterial/archaeal PolX DNA polymerases.
    Rodríguez G; Martín MT; de Vega M
    Sci Rep; 2019 Jul; 9(1):9947. PubMed ID: 31289311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial DL-2-haloacid dehalogenase from Pseudomonas sp. strain 113: gene cloning and structural comparison with D- and L-2-haloacid dehalogenases.
    Nardi-Dei V; Kurihara T; Park C; Esaki N; Soda K
    J Bacteriol; 1997 Jul; 179(13):4232-8. PubMed ID: 9209038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY.
    Ridder IS; Dijkstra BW
    Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):223-6. PubMed ID: 10191250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic annotation of protein function based on family identification.
    Abascal F; Valencia A
    Proteins; 2003 Nov; 53(3):683-92. PubMed ID: 14579359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The biosynthesis of histidine; L-histidinol phosphate phosphatase.
    AMES BN
    J Biol Chem; 1957 Jun; 226(2):583-93. PubMed ID: 13438843
    [No Abstract]   [Full Text] [Related]  

  • 47. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus.
    LaPointe G; Atlan D; Gilbert C
    BMC Biochem; 2008 Apr; 9():10. PubMed ID: 18387182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis.
    Daughtry KD; Huang H; Malashkevich V; Patskovsky Y; Liu W; Ramagopal U; Sauder JM; Burley SK; Almo SC; Dunaway-Mariano D; Allen KN
    Biochemistry; 2013 Aug; 52(32):5372-86. PubMed ID: 23848398
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases.
    Selengut JD
    Biochemistry; 2001 Oct; 40(42):12704-11. PubMed ID: 11601995
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of a New Phosphatase Enzyme Potentially Involved in the Sugar Phosphate Stress Response in Pseudomonas fluorescens.
    Maleki S; Hrudikova R; Zotchev SB; Ertesvåg H
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27836849
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal structures of the substrate free-enzyme, and reaction intermediate of the HAD superfamily member, haloacid dehalogenase DehIVa from Burkholderia cepacia MBA4.
    Schmidberger JW; Wilce JA; Tsang JS; Wilce MC
    J Mol Biol; 2007 May; 368(3):706-17. PubMed ID: 17368477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase.
    Wang H; Cronan JE
    Biochemistry; 2004 Sep; 43(37):11782-9. PubMed ID: 15362862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphinothricin Acetyltransferases Identified Using In Vivo, In Vitro, and Bioinformatic Analyses.
    VanDrisse CM; Hentchel KL; Escalante-Semerena JC
    Appl Environ Microbiol; 2016 Dec; 82(24):7041-7051. PubMed ID: 27694229
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative modelling of human PHOSPHO1 reveals a new group of phosphatases within the haloacid dehalogenase superfamily.
    Stewart AJ; Schmid R; Blindauer CA; Paisey SJ; Farquharson C
    Protein Eng; 2003 Dec; 16(12):889-95. PubMed ID: 14983068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations?
    Kim SJ; Kim KW; Cho MH; Franceschi VR; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1957-74. PubMed ID: 17467016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comprehensive Functional Annotation of Metagenomes and Microbial Genomes Using a Deep Learning-Based Method.
    Maranga M; Szczerbiak P; Bezshapkin V; Gligorijevic V; Chandler C; Bonneau R; Xavier RJ; Vatanen T; Kosciolek T
    mSystems; 2023 Apr; 8(2):e0117822. PubMed ID: 37010293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome.
    Buza TJ; McCarthy FM; Burgess SC
    BMC Genomics; 2007 Nov; 8():425. PubMed ID: 18021451
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries.
    Udaondo Z; Duque E; Daddaoua A; Caselles C; Roca A; Pizarro-Tobias P; Ramos JL
    Environ Microbiol; 2020 Aug; 22(8):3561-3571. PubMed ID: 32564477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues.
    Ponting CP; Kerr ID
    Protein Sci; 1996 May; 5(5):914-22. PubMed ID: 8732763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.