BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38284491)

  • 61. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases.
    Green ML; Karp PD
    BMC Bioinformatics; 2004 Jun; 5():76. PubMed ID: 15189570
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress.
    Sand M; Rodrigues M; González JM; de Crécy-Lagard V; Santos H; Müller V; Averhoff B
    Environ Microbiol; 2015 Mar; 17(3):711-9. PubMed ID: 24800891
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In silico characterization of putative gene homologues involved in somatic embryogenesis suggests that some conifer species may lack LEC2, one of the key regulators of initiation of the process.
    Ranade SS; Egertsdotter U
    BMC Genomics; 2021 May; 22(1):392. PubMed ID: 34039265
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Unexpected catalytic site variation in phosphoprotein phosphatase homologues of cofactor-dependent phosphoglycerate mutase.
    Rigden DJ
    FEBS Lett; 2003 Feb; 536(1-3):77-84. PubMed ID: 12586342
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues.
    Bork P; Brown NP; Hegyi H; Schultz J
    Protein Sci; 1996 Jul; 5(7):1421-5. PubMed ID: 8819174
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An Approach to Function Annotation for Proteins of Unknown Function (PUFs) in the Transcriptome of Indian Mulberry.
    Dhanyalakshmi KH; Naika MB; Sajeevan RS; Mathew OK; Shafi KM; Sowdhamini R; N Nataraja K
    PLoS One; 2016; 11(3):e0151323. PubMed ID: 26982336
    [TBL] [Abstract][Full Text] [Related]  

  • 67. BG7: a new approach for bacterial genome annotation designed for next generation sequencing data.
    Pareja-Tobes P; Manrique M; Pareja-Tobes E; Pareja E; Tobes R
    PLoS One; 2012; 7(11):e49239. PubMed ID: 23185310
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A new domain family in the superfamily of alkaline phosphatases.
    Bhadra R; Srinivasan N; Pandit SB
    In Silico Biol; 2005; 5(4):379-87. PubMed ID: 16268782
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Type I pyridoxal 5'-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines.
    Milano T; Paiardini A; Grgurina I; Pascarella S
    BMC Struct Biol; 2013 Oct; 13():26. PubMed ID: 24148833
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The first structure of a bacterial class B Acid phosphatase reveals further structural heterogeneity among phosphatases of the haloacid dehalogenase fold.
    Calderone V; Forleo C; Benvenuti M; Cristina Thaller M; Rossolini GM; Mangani S
    J Mol Biol; 2004 Jan; 335(3):761-73. PubMed ID: 14687572
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experimental validation of in silico model-predicted isocitrate dehydrogenase and phosphomannose isomerase from Dehalococcoides mccartyi.
    Islam MA; Tchigvintsev A; Yim V; Savchenko A; Yakunin AF; Mahadevan R; Edwards EA
    Microb Biotechnol; 2016 Jan; 9(1):47-60. PubMed ID: 26374290
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional characterization of two members of histidine phosphatase superfamily in Mycobacterium tuberculosis.
    Coker OO; Warit S; Rukseree K; Summpunn P; Prammananan T; Palittapongarnpim P
    BMC Microbiol; 2013 Dec; 13():292. PubMed ID: 24330471
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles.
    Khurana P; Gokhale RS; Mohanty D
    BMC Bioinformatics; 2010 Jan; 11():57. PubMed ID: 20105319
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Open Issues for Protein Function Assignment in
    Pfeiffer F; Dyall-Smith M
    Genes (Basel); 2021 Jun; 12(7):. PubMed ID: 34202810
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biochemical characterization of phosphoserine phosphatase SerB2 from Mycobacterium marinum.
    Pierson E; Wouters J
    Biochem Biophys Res Commun; 2020 Oct; 530(4):739-744. PubMed ID: 32782143
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional role for a conserved aspartate in the Spo0E signature motif involved in the dephosphorylation of the Bacillus subtilis sporulation regulator Spo0A.
    Diaz AR; Stephenson S; Green JM; Levdikov VM; Wilkinson AJ; Perego M
    J Biol Chem; 2008 Feb; 283(5):2962-72. PubMed ID: 18045868
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Using comparative genome analysis to identify problems in annotated microbial genomes.
    Poptsova MS; Gogarten JP
    Microbiology (Reading); 2010 Jul; 156(Pt 7):1909-1917. PubMed ID: 20430813
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.
    Chowdhary N; Selvaraj A; KrishnaKumaar L; Kumar GR
    PLoS One; 2015; 10(7):e0133183. PubMed ID: 26196387
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phylogenetic and amino acid conservation analyses of bacterial L-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain.
    Stuecker TN; Bramhacharya S; Hodge-Hanson KM; Suen G; Escalante-Semerena JC
    BMC Res Notes; 2015 Aug; 8():354. PubMed ID: 26276430
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Predicting ligand-binding function in families of bacterial receptors.
    Johnson JM; Church GM
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3965-70. PubMed ID: 10737762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.