These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38284556)

  • 1. A neural network potential based on pairwise resolved atomic forces and energies.
    Kalayan J; Ramzan I; Williams CD; Bryce RA; Burton NA
    J Comput Chem; 2024 May; 45(14):1143-1151. PubMed ID: 38284556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning.
    Cheng Z; Du J; Zhang L; Ma J; Li W; Li S
    Phys Chem Chem Phys; 2022 Jan; 24(3):1326-1337. PubMed ID: 34718360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Teaching a neural network to attach and detach electrons from molecules.
    Zubatyuk R; Smith JS; Nebgen BT; Tretiak S; Isayev O
    Nat Commun; 2021 Aug; 12(1):4870. PubMed ID: 34381051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.
    Wu J; Shen L; Yang W
    J Chem Phys; 2017 Oct; 147(16):161732. PubMed ID: 29096448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials.
    Glick ZL; Metcalf DP; Koutsoukas A; Spronk SA; Cheney DL; Sherrill CD
    J Chem Phys; 2020 Jul; 153(4):044112. PubMed ID: 32752707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution.
    Zeng J; Giese TJ; Ekesan Ş; York DM
    J Chem Theory Comput; 2021 Nov; 17(11):6993-7009. PubMed ID: 34644071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning of accurate energy-conserving molecular force fields.
    Chmiela S; Tkatchenko A; Sauceda HE; Poltavsky I; Schütt KT; Müller KR
    Sci Adv; 2017 May; 3(5):e1603015. PubMed ID: 28508076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning builds full-QM precision protein force fields in seconds.
    Han Y; Wang Z; Wei Z; Liu J; Li J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34017993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a new approach for determination of solute's charge distribution to analyze interatomic electrostatic interactions in quantum mechanical/molecular mechanical simulations.
    Yamada K; Koyano Y; Okamoto T; Asada T; Koga N; Nagaoka M
    J Comput Chem; 2011 Nov; 32(14):3092-104. PubMed ID: 21815177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MM Minimum Free Energy Path: Methodology and Application to Triosephosphate Isomerase.
    Hu H; Lu Z; Yang W
    J Chem Theory Comput; 2007 Mar; 3(2):390-406. PubMed ID: 19079734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method.
    Tang L; Yang ZJ; Wen TQ; Ho KM; Kramer MJ; Wang CZ
    Phys Chem Chem Phys; 2020 Sep; 22(33):18467-18479. PubMed ID: 32778859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Embedding Schemes in a Hybrid Machine Learning/Classical Potentials (ML/MM) Approach.
    Grassano JS; Pickering I; Roitberg AE; González Lebrero MC; Estrin DA; Semelak JA
    J Chem Inf Model; 2024 May; 64(10):4047-4058. PubMed ID: 38710065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Diffusion Monte Carlo Forces.
    Huang C; Rubenstein BM
    J Phys Chem A; 2023 Jan; 127(1):339-355. PubMed ID: 36576803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to describe chemical environments in high-dimensional neural network potentials.
    Kocer E; Mason JK; Erturk H
    J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular structure and dynamics of serotonin.
    Edvardsen O; Dahl SG
    Brain Res Mol Brain Res; 1991 Jan; 9(1-2):31-7. PubMed ID: 1850076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ænet-PyTorch: A GPU-supported implementation for machine learning atomic potentials training.
    López-Zorrilla J; Aretxabaleta XM; Yeu IW; Etxebarria I; Manzano H; Artrith N
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37096855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Look Inside the Black Box of Machine Learning Photodynamics Simulations.
    Li J; Lopez SA
    Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.