These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3828462)

  • 1. Resonance Raman evidence for the mechanism of the allosteric control of O2-binding in a cobalt-substituted monomeric insect hemoglobin.
    Thompson HM; Yu NT; Gersonde K
    Biophys J; 1987 Feb; 51(2):289-95. PubMed ID: 3828462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of the control of dioxygen binding in a dimeric cobalt-substituted insect hemoglobin. Resonance Raman evidence for cobalt-axial-ligand bond changes.
    Yu NT; Mackin Thompson H; Zepke D; Gersonde K
    Eur J Biochem; 1986 Jun; 157(3):579-83. PubMed ID: 3720744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bohr-effect and pH-dependence of electron spin resonance spectra of a cobalt-substituted monomeric insect haemoglobin.
    Gersonde K; Twilfer H; Overkamp M
    Biophys Struct Mech; 1982; 8(3):189-211. PubMed ID: 6284268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman investigation of CO-ligated monomeric insect hemoglobins. Direct evidence for reciprocal changes in iron-axial ligand bonds induced by allosteric transitions.
    Gersonde K; Kerr E; Yu NT; Parish DW; Smith KM
    J Biol Chem; 1986 Jul; 261(19):8678-85. PubMed ID: 3722166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bohr effect in monomeric insect haemoglobins controlled by O2 off-rate and modulated by haem-rotational disorder.
    Gersonde K; Sick H; Overkamp M; Smith KM; Parish DW
    Eur J Biochem; 1986 Jun; 157(2):393-404. PubMed ID: 3709540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-histidine stretching vibration in the deoxy state of insect hemoglobins with different O2 affinities and Bohr effects.
    Kerr EA; Yu NT; Gersonde K; Parish DW; Smith KM
    J Biol Chem; 1985 Oct; 260(23):12665-9. PubMed ID: 4044602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haem-rotational disorder in monomeric allosteric cyano-Met insect haemoglobins monitored by resonance Raman spectroscopy.
    Gersonde K; Yu NT; Kerr EA; Smith KM; Parish DW
    J Mol Biol; 1987 Apr; 194(3):545-56. PubMed ID: 3625773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton-magnetic-resonance investigation of the dynamics of the conformational transition in allosteric monomeric insect hemoglobins.
    Chacko VP; La Mar GN; Gersonde K; Sick H
    Eur J Biochem; 1986 Dec; 161(2):375-81. PubMed ID: 3780749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-carbon bond lengths in carbonmonoxy and cyanomet complexes of the monomeric hemoglobin III from Chironomus thummi thummi: a critical comparison between resonance Raman and x-ray diffraction studies.
    Yu NT; Benko B; Kerr EA; Gersonde K
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5106-10. PubMed ID: 6591180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman investigation of dioxygen bonding in oxycobaltmyoglobin and oxycobalthemoglobin: structural implication of splittings of the bound O--O stretching vibration.
    Tsubaki M; Yu NT
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3581-5. PubMed ID: 6943559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cobalt-nitrosyl stretching vibration as a sensitive resonance Raman probe for distal histidine-nitrosyl interaction in monomeric hemoglobins.
    Yu NT; Thompson HM; Mizukami H; Gersonde K
    Eur J Biochem; 1986 Aug; 159(1):129-32. PubMed ID: 3743568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman studies of Co-O2 and O-O stretching vibrations in oxy-cobalt hemes.
    Mackin HC; Tsubaki M; Yu NT
    Biophys J; 1983 Mar; 41(3):349-57. PubMed ID: 6838973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman evidence for an unusually strong exogenous ligand-metal bond in a monomeric nitrosyl manganese hemoglobin.
    Lin SH; Yu NT; Gersonde K
    FEBS Lett; 1988 Mar; 229(2):367-71. PubMed ID: 3345847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assignment of the Fe-N epsilon (His) stretching mode in the resonance Raman spectra of a monomeric insect cyanomethaemoglobin.
    Kerr EA; Yu NT; Gersonde K
    FEBS Lett; 1984 Dec; 178(1):31-3. PubMed ID: 6500060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution NMR study of the structural basis of the Bohr effect in the monomeric hemoglobins from Chironomus thummi thummi.
    Zhang W; Gersonde K; La Mar GN
    Biochemistry; 1997 Feb; 36(7):1689-98. PubMed ID: 9048552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomeric incorporation of the Haem into monomeric haemoglobins of Chironomus thummi thummi. 2. The Bohr effect of the component III explained on a molecular basis and functional differences between the two isomeric structures.
    Ribbing W; Rüterjans H
    Eur J Biochem; 1980; 108(1):89-102. PubMed ID: 7408856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional multiplicity and structural correlations in the hemoglobin system of larvae of Chironomus thummi thummi (Insecta, Diptera): Hb components CTT I, CTT II beta, CTT III, CTT IV, CTT VI, CTT VIIB, CTT IX and CTT X.
    Weber RE; Braunitzer G; Kleinschmidt T
    Comp Biochem Physiol B; 1985; 80(4):747-53. PubMed ID: 3995921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode.
    Bosenbeck M; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1992 Jan; 61(1):31-41. PubMed ID: 1540697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for hydrogen bonding of bound dioxygen to the distal histidine of oxycobalt myoglobin and haemoglobin.
    Kitagawa T; Ondrias MR; Rousseau DL; Ikeda-Saito M; Yonetani T
    Nature; 1982 Aug; 298(5877):869-71. PubMed ID: 7110321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.