These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3828465)

  • 1. Evidence for rhodopsin refolding during the decay of Meta II.
    Rothschild KJ; Gillespie J; DeGrip WJ
    Biophys J; 1987 Feb; 51(2):345-50. PubMed ID: 3828465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra.
    Klinger AL; Braiman MS
    Biophys J; 1992 Nov; 63(5):1244-55. PubMed ID: 1477276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature.
    Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J
    Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study.
    de Grip WJ; Gillespie J; Rothschild KJ
    Biochim Biophys Acta; 1985 Aug; 809(1):97-106. PubMed ID: 2992584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared difference spectra of intermediates in rhodopsin bleaching.
    Rothschild KJ; Cantore WA; Marrero H
    Science; 1983 Mar; 219(4590):1333-5. PubMed ID: 6828860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform IR spectroscopy study for new insights into molecular properties and activation mechanisms of visual pigment rhodopsin.
    Vogel R; Siebert F
    Biopolymers; 2003; 72(3):133-48. PubMed ID: 12722110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine.
    Katayama K; Furutani Y; Kandori H
    J Phys Chem B; 2010 Jul; 114(27):9039-46. PubMed ID: 20557105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations of the rhodopsin/Meta I and rhodopsin/Meta II transitions of bovine rod outer segments by means of kinetic infrared spectroscopy.
    Siebert F; Mäntele W
    Biophys Struct Mech; 1980; 6(2):147-64. PubMed ID: 7388123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 2. Roles of lipid chain length, unsaturation, and phase state.
    Baldwin PA; Hubbell WL
    Biochemistry; 1985 May; 24(11):2633-9. PubMed ID: 4027218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bathoproducts of rhodopsin, isorhodopsin I, and isorhodopsin II.
    Mao B; Ebrey TG; Crouch R
    Biophys J; 1980 Feb; 29(2):247-56. PubMed ID: 7260250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin.
    Garcia-Quintana D; Francesch A; Garriga P; de Lera AR; Padrós E; Manyosa J
    Biophys J; 1995 Sep; 69(3):1077-82. PubMed ID: 8519961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bleaching intermediate kinetics of rhodopsin: picosecond kinetics for squid rhodopsin.
    Kobayashi T; Nagakura S
    Methods Enzymol; 1982; 81():368-73. PubMed ID: 7098881
    [No Abstract]   [Full Text] [Related]  

  • 16. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoexcitation of rhodopsin: conformation changes in the chromophore, protein and associated lipids as determined by FTIR difference spectroscopy.
    DeGrip WJ; Gray D; Gillespie J; Bovee PH; Van den Berg EM; Lugtenburg J; Rothschild KJ
    Photochem Photobiol; 1988 Oct; 48(4):497-504. PubMed ID: 3231685
    [No Abstract]   [Full Text] [Related]  

  • 18. Rhodopsin photoproducts in 2D crystals.
    Vogel R; Ruprecht J; Villa C; Mielke T; Schertler GF; Siebert F
    J Mol Biol; 2004 Apr; 338(3):597-609. PubMed ID: 15081816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of phospholipids and detergents on transitions and equilibrium between the bleaching intermediates of rhodopsin.
    Motoyama H; Hamanaka T; Kawase N; Boucher F; Kitô Y
    Can J Biochem Cell Biol; 1985 Nov; 63(11):1152-9. PubMed ID: 4084854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological applications of picosecond spectroscopy: on the early picosecond intermediates of the visual chromophore-rhodopsin.
    Rentzepis PM
    Prog Clin Biol Res; 1982; 102 Pt B():461-77. PubMed ID: 7163181
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.