These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3828465)

  • 21. Conformational changes of cytosolic loops of bovine rhodopsin during the transition to metarhodopsin-II: an investigation by Fourier transform infrared difference spectroscopy.
    Ganter UM; Charitopoulos T; Virmaux N; Siebert F
    Photochem Photobiol; 1992 Jul; 56(1):57-62. PubMed ID: 1508983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of Glu181 in the photoactivation of rhodopsin.
    Lüdeke S; Beck M; Yan EC; Sakmar TP; Siebert F; Vogel R
    J Mol Biol; 2005 Oct; 353(2):345-56. PubMed ID: 16169009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study of heat denaturation of rhodopsin in the external retinal rod segments of cattle by infrared spectroscopy].
    Shnyrov VL; Berman AL; Lazarev IuA
    Biofizika; 1979; 24(4):752-4. PubMed ID: 476183
    [No Abstract]   [Full Text] [Related]  

  • 24. Hydrogen exchange study of membrane-bound rhodopsin. II. Light-induced protein structure change.
    Downer NW; Englander SW
    J Biol Chem; 1977 Nov; 252(22):8101-4. PubMed ID: 21190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a common BATHO-intermediate in the bleaching of rhodopsin and isorhodopsin.
    Kliger DS; Horwitz JS; Lewis JW; Einterz CM
    Vision Res; 1984; 24(11):1465-70. PubMed ID: 6533980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Halorhodopsin and sensory rhodopsin contain a C6-C7 s-trans retinal chromophore.
    Baselt DR; Fodor SP; van der Steen R; Lugtenburg J; Bogomolni RA; Mathies RA
    Biophys J; 1989 Jan; 55(1):193-6. PubMed ID: 2930820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deactivation of rhodopsin in the transition from the signaling state meta II to meta III involves a thermal isomerization of the retinal chromophore C[double bond]D.
    Vogel R; Siebert F; Mathias G; Tavan P; Fan G; Sheves M
    Biochemistry; 2003 Aug; 42(33):9863-74. PubMed ID: 12924935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A structural role for Asp83 in the photoactivation of rhodopsin.
    Breikers G; Bovee-Geurts PH; DeCaluwé GL; DeGrip WJ
    Biol Chem; 2001 Aug; 382(8):1263-70. PubMed ID: 11592408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin.
    Meyer TE; Yakali E; Cusanovich MA; Tollin G
    Biochemistry; 1987 Jan; 26(2):418-23. PubMed ID: 3828315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling of photointermediates suggests a mechanism of the flip of the beta-ionone moiety of the retinylidene chromophore in the rhodopsin photocascade.
    Ishiguro M; Hirano T; Oyama Y
    Chembiochem; 2003 Mar; 4(2-3):228-31. PubMed ID: 12616639
    [No Abstract]   [Full Text] [Related]  

  • 32. A spectroscopic study of rhodopsin alpha-helix orientation.
    Rothschild KJ; Sanches R; Hsiao TL; Clark NA
    Biophys J; 1980 Jul; 31(1):53-64. PubMed ID: 7272433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative FTIR study of a new fungal rhodopsin.
    Ito H; Sumii M; Kawanabe A; Fan Y; Furutani Y; Brown LS; Kandori H
    J Phys Chem B; 2012 Oct; 116(39):11881-9. PubMed ID: 22973982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flash-induced kinetic infrared spectroscopy applied to biochemical systems.
    Siebert F; Mäntele W; Kreutz W
    Biophys Struct Mech; 1980; 6(2):139-46. PubMed ID: 7388122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fourier transform infrared spectroscopic study on retinochrome and its primary photoproduct, lumiretinochrome.
    Sekiya N; Kishigami A; Naoki H; Chang CW; Yoshihara K; Hara R; Hara T; Tokunaga F
    FEBS Lett; 1991 Mar; 280(1):107-11. PubMed ID: 2009953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photointermediates of visual pigments.
    Lewis JW; Kliger DS
    J Bioenerg Biomembr; 1992 Apr; 24(2):201-10. PubMed ID: 1326516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diamagnetic anisotropy and orientation of alpha helix in frog rhodopsin and meta II intermediate.
    Chabre M
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5471-4. PubMed ID: 310121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway.
    Ganter UM; Longstaff C; Pajares MA; Rando RR; Siebert F
    Biophys J; 1991 Mar; 59(3):640-4. PubMed ID: 2049524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation.
    Vogel R; Lüdeke S; Siebert F; Sakmar TP; Hirshfeld A; Sheves M
    Biochemistry; 2006 Feb; 45(6):1640-52. PubMed ID: 16460011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and functional properties of metarhodopsin III: recent spectroscopic studies on deactivation pathways of rhodopsin.
    Bartl FJ; Vogel R
    Phys Chem Chem Phys; 2007 Apr; 9(14):1648-58. PubMed ID: 17396175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.