BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38284767)

  • 1. Non-invasive methods for heart rate measurement in fish based on photoplethysmography.
    Deng Y; Hu T; Chen J; Zeng J; Yang J; Ke Q; Miao L; Chen Y; Li R; Zhang R; Xu P
    J Exp Biol; 2024 Feb; 227(4):. PubMed ID: 38284767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sliding Scale Signal Quality Metric of Photoplethysmography Applicable to Measuring Heart Rate across Clinical Contexts with Chest Mounting as a Case Study.
    McLean MK; Weaver RG; Lane A; Smith MT; Parker H; Stone B; McAninch J; Matolak DW; Burkart S; Chandrashekhar MVS; Armstrong B
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote Photoplethysmography with a High-Speed Camera Reveals Temporal and Amplitude Differences between Glabrous and Non-Glabrous Skin.
    Cao M; Burton T; Saiko G; Douplik A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
    Jeyhani V; Mahdiani S; Peltokangas M; Vehkaoja A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5952-5. PubMed ID: 26737647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote heart rate monitoring - Assessment of the FacereaderĀ rPPg by Noldus.
    Benedetto S; Caldato C; Greenwood DC; Bartoli N; Pensabene V; Actis P
    PLoS One; 2019; 14(11):e0225592. PubMed ID: 31756239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M; Nazeran H; Haltiwanger E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of continuous photoplethysmography-based 1 min mean heart rate assessment during atrial fibrillation.
    Hermans ANL; Isaksen JL; Gawalko M; Pluymaekers NAHA; van der Velden RMJ; Snippe H; Evens S; De Witte G; Luermans JGLM; Manninger M; Lumens J; Kanters JK; Linz D
    Europace; 2023 Mar; 25(3):835-844. PubMed ID: 36748247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of reflected green light and infrared photoplethysmography.
    Maeda Y; Sekine M; Tamura T; Moriya A; Suzuki T; Kameyama K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2270-2. PubMed ID: 19163152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals.
    Yu SG; Kim SE; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of error between the heartbeat intervals measured form photoplethysmogram and electrocardiogram by synchronisation.
    Kuntamalla S; Lekkala RGR
    J Med Eng Technol; 2018 Jul; 42(5):389-396. PubMed ID: 30324857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography.
    Selvaraj N; Jaryal A; Santhosh J; Deepak KK; Anand S
    J Med Eng Technol; 2008; 32(6):479-84. PubMed ID: 18663635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):969-76. PubMed ID: 20703691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG.
    Lee H; Cho A; Whang M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects.
    Lu G; Yang F; Taylor JA; Stein JF
    J Med Eng Technol; 2009; 33(8):634-41. PubMed ID: 19848857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects.
    Weinschenk SW; Beise RD; Lorenz J
    Eur J Appl Physiol; 2016 Aug; 116(8):1527-35. PubMed ID: 27278521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Robustness of Smartphone Photoplethysmography: A Signal Quality Index Approach.
    Liu I; Ni S; Peng K
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography.
    Firoozabadi R; Helfenbein ED; Babaeizadeh S
    J Electrocardiol; 2017; 50(6):841-846. PubMed ID: 28918214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attacks on Heartbeat-Based Security Using Remote Photoplethysmography.
    Seepers RM; Wang W; de Haan G; Sourdis I; Strydis C
    IEEE J Biomed Health Inform; 2018 May; 22(3):714-721. PubMed ID: 28391214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.