These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38284825)

  • 1. Spherical shock waveform reconstruction by heterodyne interferometry.
    Hart CR; Lyons GW; White MJ
    J Acoust Soc Am; 2024 Jan; 155(1):769-780. PubMed ID: 38284825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones.
    Yuldashev P; Karzova M; Khokhlova V; Ollivier S; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3314-24. PubMed ID: 26093421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Irregular reflection of spark-generated shock pulses from a rigid surface: Mach-Zehnder interferometry measurements in air.
    Karzova MM; Lechat T; Ollivier S; Dragna D; Yuldashev PV; Khokhlova VA; Blanc-Benon P
    J Acoust Soc Am; 2019 Jan; 145(1):26. PubMed ID: 30710976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiaxis heterodyne vibrometer for simultaneous observation of 5 degrees of dynamic freedom from a single beam.
    Perea J; Libbey B; Nehmetallah G
    Opt Lett; 2018 Jul; 43(13):3120-3123. PubMed ID: 29957794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound field reconstruction using acousto-optic tomography.
    Torras-Rosell A; Barrera-Figueroa S; Jacobsen F
    J Acoust Soc Am; 2012 May; 131(5):3786-93. PubMed ID: 22559354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of Pressure Wave Observation by Acousto-Optic Sensing Using a Self-Mixing Interferometer.
    Maqueda S; Perchoux J; Tronche C; Imas González JJ; Genetier M; Lavayssière M; Barbarin Y
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous identification of the low-field-induced tiny variation of complex refractive index for anisotropic and opaque magnetic-fluid thin film by a stable heterodyne Mach-Zehnder interferometer.
    Hong CY; Chieh JJ; Yang SY; Yang HC; Horng HE
    Appl Opt; 2009 Oct; 48(29):5604-11. PubMed ID: 19823245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of refractive-index dispersion of transparent media by white-light interferometry.
    Galli M; Marabelli F; Guizzetti G
    Appl Opt; 2003 Jul; 42(19):3910-4. PubMed ID: 12868830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock Properties Characterization of Dielectric Materials Using Millimeter-Wave Interferometry and Convolutional Neural Networks.
    Mapas J; Lefrançois A; Aubert H; Comte S; Barbarin Y; Lavayssière M; Rougier B; Dore A
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry.
    Hsieh HL; Pan SW
    Appl Opt; 2013 Sep; 52(27):6840-8. PubMed ID: 24085186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.
    Canagasabey A; Michie A; Canning J; Holdsworth J; Fleming S; Wang HC; Aslund ML
    Sensors (Basel); 2011; 11(10):9233-41. PubMed ID: 22163692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of spark-generated N-waves in air using an optical schlieren method.
    Karzova MM; Yuldashev PV; Khokhlova VA; Ollivier S; Salze E; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3244-52. PubMed ID: 26093414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative method for measuring the full-field refractive index of a gradient-index lens with normal incidence heterodyne interferometry.
    Chen YL; Hsieh HC; Wu WT; Chang WY; Su DC
    Appl Opt; 2010 Dec; 49(36):6888-92. PubMed ID: 21173822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterodyne wavelength meter for continuous-wave lasers.
    Wang X; Li Y; Zhang S
    Appl Opt; 2007 Aug; 46(23):5631-4. PubMed ID: 17694109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement.
    Le Floch S; Salvadé Y; Droz N; Mitouassiwou R; Favre P
    Appl Opt; 2010 Feb; 49(4):714-7. PubMed ID: 20119024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic model of nonlinearity errors in laser heterodyne interferometry.
    Chen H; Jiang B; Shi Z
    Appl Opt; 2018 May; 57(14):3890-3901. PubMed ID: 29791357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of focused ultrasonic fields using a scanning laser vibrometer.
    Wang Y; Tyrer J; Zhihong P; Shiquan W
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2621-7. PubMed ID: 17550161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.
    Zhou H; Zhang Y; Han R; Jing Y; Wu J; Liu Q; Ding W; Qiu A
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widefield heterodyne interferometry using a custom CMOS modulated light camera.
    Patel R; Achamfuo-Yeboah S; Light R; Clark M
    Opt Express; 2011 Nov; 19(24):24546-56. PubMed ID: 22109482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal lensing approach based on parabolic approximation and Mach-Zehnder interferometer.
    Rodriguez LG; Niemela J; Cabrera H
    Heliyon; 2023 Oct; 9(10):e20492. PubMed ID: 37790966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.