These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3828534)

  • 1. Localization of chlorotetracycline fluorescence in human polymorphonuclear neutrophils.
    Coates TD; Torres M; Harman J; Williams V
    Blood; 1987 Apr; 69(4):1146-52. PubMed ID: 3828534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutrophil cytoplasts: relationships of superoxide release and calcium pools.
    Torres M; Coates TD
    Blood; 1984 Oct; 64(4):891-5. PubMed ID: 6089936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of adenosine on the fluorescence responses of chlorotetracycline-loaded human polymorphonuclear leukocytes.
    Tsuruta S; Ito S; Mikawa H
    FEBS Lett; 1990 Jul; 268(1):241-4. PubMed ID: 2384162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between chemotactic peptide-induced changes in chlorotetracycline fluorescence and F-actin content in human neutrophils: a role for membrane-associated calcium in the regulation of actin polymerization?
    Bengtsson T
    Exp Cell Res; 1990 Nov; 191(1):57-63. PubMed ID: 2226651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic requirements for maintenance of the chlortetracycline-labeled pool of membrane-bound calcium in human neutrophils.
    Smolen JE; Noble P; Freed R; Weissmann G
    J Cell Physiol; 1983 Dec; 117(3):415-22. PubMed ID: 6654990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of various stimuli and calcium antagonists on the fluorescence response of chlorotetracycline-loaded human neutrophils.
    Smolen JE; Weissmann G
    Biochim Biophys Acta; 1982 Apr; 720(2):172-80. PubMed ID: 6282339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fluorescence response of chlorotetracycline-loaded human neutrophils. Correlations with lysosomal enzyme release and evidence for a 'trigger pool' of calcium.
    Smolen JE; Eisenstat BA; Weissmann G
    Biochim Biophys Acta; 1982 Aug; 717(3):422-31. PubMed ID: 7126637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of action of the antiinflammatory agents dexamethasone and Auranofin in human polymorphonuclear leukocytes.
    Coates TD; Wolach B; Tzeng DY; Higgins C; Baehner RL; Boxer LA
    Blood; 1983 Nov; 62(5):1070-7. PubMed ID: 6313097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of some non-steroidal anti-inflammatory agents on membrane-associated calcium in rabbit peritoneal neutrophils.
    Northover AM
    Biochem Pharmacol; 1985 Sep; 34(17):3123-9. PubMed ID: 4038325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelationships of polymorphonuclear neutrophil membrane-bound calcium, membrane potential, and chemiluminescence: studies in single living cells.
    Sullivan GW; Donowitz GR; Sullivan JA; Mandell GL
    Blood; 1984 Dec; 64(6):1184-92. PubMed ID: 6437460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of C5a and formyl peptide receptor expression on human polymorphonuclear leukocytes.
    Van Epps DE; Simpson S; Bender JG; Chenoweth DE
    J Immunol; 1990 Feb; 144(3):1062-8. PubMed ID: 2295813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline.
    Chandler DE; Williams JA
    J Cell Biol; 1978 Feb; 76(2):386-99. PubMed ID: 10605445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two distinct Ca2+ storage and release sites in human neutrophils.
    Pettit EJ; Hallett MB
    J Leukoc Biol; 1998 Feb; 63(2):225-32. PubMed ID: 9468281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence response in chlortetracycline-loaded neutrophils measures release of Ca2+ from intracellular membrane enclosed storage sites.
    Jacob J
    Biochim Biophys Acta; 1991 Feb; 1091(3):317-23. PubMed ID: 1900441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of the membrane-calcium and its relation to the superoxide formation by polymorphonuclear leukocytes.
    Takeshige K; Matsumoto T; Nabi ZF; Minakami S
    Adv Exp Med Biol; 1982; 141():453-61. PubMed ID: 6283837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminin promotes the oxidative burst in human neutrophils via increased chemoattractant receptor expression.
    Pike MC; Wicha MS; Yoon P; Mayo L; Boxer LA
    J Immunol; 1989 Mar; 142(6):2004-11. PubMed ID: 2537868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear gramicidin activates neutrophil functions and the activation is blocked by chemotactic peptide receptor antagonist.
    Jacob J
    FEBS Lett; 1988 Apr; 231(1):139-42. PubMed ID: 2452097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between phosphoinositide metabolism, Ca2+ changes and respiratory burst in formyl-methionyl-leucyl-phenylalanine-stimulated human neutrophils. The breakdown of phosphoinositides is not involved in the rise of cytosolic free Ca2+.
    Rossi F; Della Bianca V; Grzeskowiak M; De Togni P; Cabrini G
    FEBS Lett; 1985 Feb; 181(2):253-8. PubMed ID: 2982659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of fMet-Leu-Phe receptor-mediated Ca2+ influx across the plasma membrane of human neutrophils.
    Andersson T; Dahlgren C; Pozzan T; Stendahl O; Lew PD
    Mol Pharmacol; 1986 Nov; 30(5):437-43. PubMed ID: 2430168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of human polymorphonuclear leukocyte surface sialic acid inhibits reexpression (or recycling) of formyl peptide receptors. A possible explanation for its effect on formyl peptide-induced polymorphonuclear leukocyte chemotaxis.
    Perez HD; Elfman F; Lobo E
    J Immunol; 1987 Sep; 139(6):1978-84. PubMed ID: 3624873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.