These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38285405)
1. A comparison of strategies for selecting auxiliary variables for multiple imputation. Mainzer RM; Nguyen CD; Carlin JB; Moreno-Betancur M; White IR; Lee KJ Biom J; 2024 Jan; 66(1):e2200291. PubMed ID: 38285405 [TBL] [Abstract][Full Text] [Related]
2. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E; Cornish RP; Heron JE; Carpenter JR; Tilling K BMC Med Res Methodol; 2024 Oct; 24(1):231. PubMed ID: 39375597 [TBL] [Abstract][Full Text] [Related]
3. Analyses Using Multiple Imputation Need to Consider Missing Data in Auxiliary Variables. Madley-Dowd P; Curnow E; Hughes RA; Cornish R; Tilling K; Heron J Am J Epidemiol; 2024 Aug; ():. PubMed ID: 39191658 [TBL] [Abstract][Full Text] [Related]
4. Variable selection for multiply-imputed data with application to dioxin exposure study. Chen Q; Wang S Stat Med; 2013 Sep; 32(21):3646-59. PubMed ID: 23526243 [TBL] [Abstract][Full Text] [Related]
5. Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias. Curnow E; Tilling K; Heron JE; Cornish RP; Carpenter JR Front Epidemiol; 2023 Sep; 3():1237447. PubMed ID: 37974561 [TBL] [Abstract][Full Text] [Related]
6. Random forest analysis and lasso regression outperform traditional methods in identifying missing data auxiliary variables when the MAR mechanism is nonlinear (p.s. Stop using Little's MCAR test). Hayes T; Baraldi AN; Coxe S Behav Res Methods; 2024 Dec; 56(8):8608-8639. PubMed ID: 39251529 [TBL] [Abstract][Full Text] [Related]
7. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data. Sullivan TR; Salter AB; Ryan P; Lee KJ Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075 [TBL] [Abstract][Full Text] [Related]
8. Multiple imputation for longitudinal data using Bayesian lasso imputation model. Yamaguchi Y; Yoshida S; Misumi T; Maruo K Stat Med; 2022 Mar; 41(6):1042-1058. PubMed ID: 35064581 [TBL] [Abstract][Full Text] [Related]
9. Analyzing evidence-based falls prevention data with significant missing information using variable selection after multiple imputation. Cheng Y; Li Y; Lee Smith M; Li C; Shen Y J Appl Stat; 2023; 50(3):724-743. PubMed ID: 36819083 [TBL] [Abstract][Full Text] [Related]
10. Missing data strategies for time-varying confounders in comparative effectiveness studies of non-missing time-varying exposures and right-censored outcomes. Desai M; Montez-Rath ME; Kapphahn K; Joyce VR; Mathur MB; Garcia A; Purington N; Owens DK Stat Med; 2019 Jul; 38(17):3204-3220. PubMed ID: 31099433 [TBL] [Abstract][Full Text] [Related]
11. Imputation strategies for missing binary outcomes in cluster randomized trials. Ma J; Akhtar-Danesh N; Dolovich L; Thabane L; BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148 [TBL] [Abstract][Full Text] [Related]
12. Dealing with missing delirium assessments in prospective clinical studies of the critically ill: a simulation study and reanalysis of two delirium studies. Raman R; Chen W; Harhay MO; Thompson JL; Ely EW; Pandharipande PP; Patel MB BMC Med Res Methodol; 2021 May; 21(1):97. PubMed ID: 33952189 [TBL] [Abstract][Full Text] [Related]
13. A passive and inclusive strategy to impute missing values of a composite categorical variable with an application to determine HIV transmission categories. Pan Y; He Y; Song R; Wang G; An Q Ann Epidemiol; 2020 Nov; 51():41-47.e2. PubMed ID: 32711055 [TBL] [Abstract][Full Text] [Related]
14. Auxiliary variables in multiple imputation in regression with missing X: a warning against including too many in small sample research. Hardt J; Herke M; Leonhart R BMC Med Res Methodol; 2012 Dec; 12():184. PubMed ID: 23216665 [TBL] [Abstract][Full Text] [Related]
15. Correction of bias from non-random missing longitudinal data using auxiliary information. Wang C; Hall CB Stat Med; 2010 Mar; 29(6):671-9. PubMed ID: 20029935 [TBL] [Abstract][Full Text] [Related]
16. The proportion of missing data should not be used to guide decisions on multiple imputation. Madley-Dowd P; Hughes R; Tilling K; Heron J J Clin Epidemiol; 2019 Jun; 110():63-73. PubMed ID: 30878639 [TBL] [Abstract][Full Text] [Related]
17. The use of complete-case and multiple imputation-based analyses in molecular epidemiology studies that assess interaction effects. Desai M; Esserman DA; Gammon MD; Terry MB Epidemiol Perspect Innov; 2011 Oct; 8(1):5. PubMed ID: 21978450 [TBL] [Abstract][Full Text] [Related]
18. Impact of missing data on bias and precision when estimating change in patient-reported outcomes from a clinical registry. Ayilara OF; Zhang L; Sajobi TT; Sawatzky R; Bohm E; Lix LM Health Qual Life Outcomes; 2019 Jun; 17(1):106. PubMed ID: 31221151 [TBL] [Abstract][Full Text] [Related]
19. A comparison of multiple imputation strategies to deal with missing nonnormal data in structural equation modeling. Jia F; Wu W Behav Res Methods; 2023 Sep; 55(6):3100-3119. PubMed ID: 36038813 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of variable selection methods in the context of developing psychiatric screening instruments. Lu F; Petkova E Stat Med; 2014 Feb; 33(3):401-21. PubMed ID: 23934941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]