These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38285405)
21. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
22. Multiple imputation using linked proxy outcome data resulted in important bias reduction and efficiency gains: a simulation study. Cornish RP; Macleod J; Carpenter JR; Tilling K Emerg Themes Epidemiol; 2017; 14():14. PubMed ID: 29270206 [TBL] [Abstract][Full Text] [Related]
23. Multiple imputation in veterinary epidemiological studies: a case study and simulation. Dohoo IR; Nielsen CR; Emanuelson U Prev Vet Med; 2016 Jul; 129():35-47. PubMed ID: 27317321 [TBL] [Abstract][Full Text] [Related]
24. Solving the many-variables problem in MICE with principal component regression. Costantini E; Lang KM; Sijtsma K; Reeskens T Behav Res Methods; 2024 Mar; 56(3):1715-1737. PubMed ID: 37540467 [TBL] [Abstract][Full Text] [Related]
25. Missing data imputation, prediction, and feature selection in diagnosis of vaginal prolapse. Fan M; Peng X; Niu X; Cui T; He Q BMC Med Res Methodol; 2023 Nov; 23(1):259. PubMed ID: 37932660 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation. Rezvan PH; White IR; Lee KJ; Carlin JB; Simpson JA BMC Med Res Methodol; 2015 Oct; 15():83. PubMed ID: 26464305 [TBL] [Abstract][Full Text] [Related]
27. A comparison of multiple imputation strategies for handling missing data in multi-item scales: Guidance for longitudinal studies. Mainzer R; Apajee J; Nguyen CD; Carlin JB; Lee KJ Stat Med; 2021 Sep; 40(21):4660-4674. PubMed ID: 34102709 [TBL] [Abstract][Full Text] [Related]
28. A simple pooling method for variable selection in multiply imputed datasets outperformed complex methods. Panken AM; Heymans MW BMC Med Res Methodol; 2022 Aug; 22(1):214. PubMed ID: 35927610 [TBL] [Abstract][Full Text] [Related]
29. Variable Selection in the Presence of Missing Data: Imputation-based Methods. Zhao Y; Long Q Wiley Interdiscip Rev Comput Stat; 2017; 9(5):. PubMed ID: 29085552 [TBL] [Abstract][Full Text] [Related]
31. Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study. Floden L; Bell ML BMC Med Res Methodol; 2019 Jul; 19(1):161. PubMed ID: 31345166 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome. Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860 [TBL] [Abstract][Full Text] [Related]
33. Multiple imputation in the presence of an incomplete binary variable created from an underlying continuous variable. Grobler AC; Lee K Biom J; 2020 Mar; 62(2):467-478. PubMed ID: 31304611 [TBL] [Abstract][Full Text] [Related]
34. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. Marshall A; Altman DG; Royston P; Holder RL BMC Med Res Methodol; 2010 Jan; 10():7. PubMed ID: 20085642 [TBL] [Abstract][Full Text] [Related]
35. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related]
36. A Causal View on Bias in Missing Data Imputation: The Impact of Evil Auxiliary Variables on Norming of Test Scores. Sengewald E; Hardt K; Sengewald MA Multivariate Behav Res; 2024 Oct; ():1-17. PubMed ID: 39427287 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data. Welch CA; Petersen I; Bartlett JW; White IR; Marston L; Morris RW; Nazareth I; Walters K; Carpenter J Stat Med; 2014 Sep; 33(21):3725-37. PubMed ID: 24782349 [TBL] [Abstract][Full Text] [Related]
38. Using Principal Components as Auxiliary Variables in Missing Data Estimation. Howard WJ; Rhemtulla M; Little TD Multivariate Behav Res; 2015; 50(3):285-99. PubMed ID: 26610030 [TBL] [Abstract][Full Text] [Related]
39. A Cautious Note on Auxiliary Variables That Can Increase Bias in Missing Data Problems. Thoemmes F; Rose N Multivariate Behav Res; 2014; 49(5):443-59. PubMed ID: 26732358 [TBL] [Abstract][Full Text] [Related]
40. The impact of missing data on analyses of a time-dependent exposure in a longitudinal cohort: a simulation study. Karahalios A; Baglietto L; Lee KJ; English DR; Carlin JB; Simpson JA Emerg Themes Epidemiol; 2013 Aug; 10(1):6. PubMed ID: 23947681 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]