These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38285579)

  • 1. Linear Deconfounded Score Method: Scoring DAGs With Dense Unobserved Confounding.
    Bellot A; van der Schaar M
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4948-4962. PubMed ID: 38285579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causal Artificial Intelligence Models of Food Quality Data.
    Kurtanjek Ž
    Food Technol Biotechnol; 2024 Mar; 62(1):102-109. PubMed ID: 38601958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DAG With Omitted Objects Displayed (DAGWOOD): a framework for revealing causal assumptions in DAGs.
    Haber NA; Wood ME; Wieten S; Breskin A
    Ann Epidemiol; 2022 Apr; 68():64-71. PubMed ID: 35124197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Directed acyclic graphs (DAGs) - the application of causal diagrams in epidemiology].
    Schipf S; Knüppel S; Hardt J; Stang A
    Gesundheitswesen; 2011 Dec; 73(12):888-92. PubMed ID: 22193898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning Subject-Specific Directed Acyclic Graphs With Mixed Effects Structural Equation Models From Observational Data.
    Li X; Xie S; McColgan P; Tabrizi SJ; Scahill RI; Zeng D; Wang Y
    Front Genet; 2018; 9():430. PubMed ID: 30333854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed acyclic graphs in perioperative observational research-A systematic review and critique against best practice recommendations.
    Watson ML; Hickman SHM; Dreesbeimdiek KM; Kohler K; Stubbs DJ
    PLoS One; 2023; 18(2):e0281259. PubMed ID: 36758007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Causal Inference in Medicine Part II. Directed acyclic graphs--a useful method for confounder selection, categorization of potential biases, and hypothesis specification].
    Suzuki E; Komatsu H; Yorifuji T; Yamamoto E; Doi H; Tsuda T
    Nihon Eiseigaku Zasshi; 2009 Sep; 64(4):796-805. PubMed ID: 19797848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing Graphical Causal Models Using the R Package "dagitty".
    Ankan A; Wortel IMN; Textor J
    Curr Protoc; 2021 Feb; 1(2):e45. PubMed ID: 33592130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations.
    Tennant PWG; Murray EJ; Arnold KF; Berrie L; Fox MP; Gadd SC; Harrison WJ; Keeble C; Ranker LR; Textor J; Tomova GD; Gilthorpe MS; Ellison GTH
    Int J Epidemiol; 2021 May; 50(2):620-632. PubMed ID: 33330936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal Diagrams: Pitfalls and Tips.
    Suzuki E; Shinozaki T; Yamamoto E
    J Epidemiol; 2020 Apr; 30(4):153-162. PubMed ID: 32009103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of confounding on the target population: a modification of causal graphs to account for co-action.
    Flanders WD; Johnson CY; Howards PP; Greenland S
    Ann Epidemiol; 2011 Sep; 21(9):698-705. PubMed ID: 21737305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a novel and systematic method for building directed acyclic graphs.
    Ferguson KD; McCann M; Katikireddi SV; Thomson H; Green MJ; Smith DJ; Lewsey JD
    Int J Epidemiol; 2020 Feb; 49(1):322-329. PubMed ID: 31325312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphical presentation of confounding in directed acyclic graphs.
    Suttorp MM; Siegerink B; Jager KJ; Zoccali C; Dekker FW
    Nephrol Dial Transplant; 2015 Sep; 30(9):1418-23. PubMed ID: 25324358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing causal effects of early life-course factors on early childhood caries in 5-year-old Ugandan children using directed acyclic graphs (DAGs): A prospective cohort study.
    Birungi N; Fadnes LT; Kasangaki A; Nankabirwa V; Okullo I; Lie SA; Tumwine JK; Åstrøm AN;
    Community Dent Oral Epidemiol; 2017 Dec; 45(6):512-521. PubMed ID: 28631283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural factor equation models for causal network construction via directed acyclic mixed graphs.
    Zhou Y; Song PX; Wen X
    Biometrics; 2021 Jun; 77(2):573-586. PubMed ID: 32627167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A directed acyclic graph for interactions.
    Nilsson A; Bonander C; Strömberg U; Björk J
    Int J Epidemiol; 2021 May; 50(2):613-619. PubMed ID: 33221880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Gaussian Methods for Causal Structure Learning.
    Shimizu S
    Prev Sci; 2019 Apr; 20(3):431-441. PubMed ID: 29789997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian inference of causal effects from observational data in Gaussian graphical models.
    Castelletti F; Consonni G
    Biometrics; 2021 Mar; 77(1):136-149. PubMed ID: 32294233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the causal effect of an exposure on change from baseline using directed acyclic graphs and path analysis.
    Lepage B; Lamy S; Dedieu D; Savy N; Lang T
    Epidemiology; 2015 Jan; 26(1):122-9. PubMed ID: 25401453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conceptual framework for investigating causal effects from observational data in livestock.
    Bello NM; Ferreira VC; Gianola D; Rosa GJM
    J Anim Sci; 2018 Sep; 96(10):4045-4062. PubMed ID: 30107524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.