These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38285647)
1. Percolating Network of Anionic Vacancies in Prussian Blue: Origin of Superior Ammonium-Ion Storage Performance. Xiong F; Liu X; Zuo C; Zhang X; Yang T; Zhou B; Zhang G; Tan S; An Q; Chu PK J Phys Chem Lett; 2024 Feb; 15(5):1321-1327. PubMed ID: 38285647 [TBL] [Abstract][Full Text] [Related]
2. Intercalation of Al Zheng J; Yi K; Chang C Small Methods; 2024 Aug; ():e2401000. PubMed ID: 39212650 [TBL] [Abstract][Full Text] [Related]
3. Interface and electronic structure engineering induced Prussian blue analogues with ultra-stable capability for aqueous NH Hou W; Yan C; Shao P; Dai K; Yang J Nanoscale; 2022 Jun; 14(23):8501-8509. PubMed ID: 35665797 [TBL] [Abstract][Full Text] [Related]
4. Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries. Zhang K; Lee TH; Bubach B; Jang HW; Ostadhassan M; Choi JW; Shokouhimehr M Sci Rep; 2019 Sep; 9(1):13665. PubMed ID: 31541195 [TBL] [Abstract][Full Text] [Related]
5. Berlin Green with tunable iron content as ultra-high rate host for efficient aqueous ammonium ion storage. Guo YF; Qu JP; Liu XY; Wang PF; Liu ZL; Zhang JH; Yi TF J Colloid Interface Sci; 2024 Aug; 667():607-616. PubMed ID: 38657544 [TBL] [Abstract][Full Text] [Related]
6. Dual Redox Reactions of Silver Hexacyanoferrate Prussian Blue Analogue Enable Superior Electrochemical Performance for Zinc-ion Storage. Wang L; Liu N; Li Q; Wang X; Liu J; Xu Y; Luo Z; Zhang N; Li F Angew Chem Int Ed Engl; 2024 Oct; ():e202416392. PubMed ID: 39401949 [TBL] [Abstract][Full Text] [Related]
7. Organic Ammonium Ion Battery: A New Strategy for a Nonmetallic Ion Energy Storage System. Zhang H; Tian Y; Wang W; Jian Z; Chen W Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202204351. PubMed ID: 35470508 [TBL] [Abstract][Full Text] [Related]
8. Oxygen Vacancy-Enriched Bi Ling D; Wang Q; Tian G; Yu H; Zhang D; Wang Q ACS Nano; 2023 Dec; 17(24):25222-25233. PubMed ID: 38060215 [TBL] [Abstract][Full Text] [Related]
9. Nano-Ni/Co-PBA as high-performance cathode material for aqueous sodium-ion batteries. Zeng Y; Wang Y; Huang Z; Luo H; Tang H; Dong S; Luo P Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37604148 [TBL] [Abstract][Full Text] [Related]
10. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related]
11. Ball Milling-Enabled Fe Lucero M; Armitage DB; Yang X; Sandstrom SK; Lyons M; Davis RC; Sterbinsky GE; Kim N; Reed DM; Ji X; Li X; Feng Z ACS Appl Mater Interfaces; 2023 Aug; 15(30):36366-36372. PubMed ID: 37481736 [TBL] [Abstract][Full Text] [Related]
12. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035 [TBL] [Abstract][Full Text] [Related]
13. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Zhang Z; Avdeev M; Chen H; Yin W; Kan WH; He G Nat Commun; 2022 Dec; 13(1):7790. PubMed ID: 36526618 [TBL] [Abstract][Full Text] [Related]
14. A Heterostructure Coupling of Bioinspired, Adhesive Polydopamine, and Porous Prussian Blue Nanocubics as Cathode for High-Performance Sodium-Ion Battery. Liu Y; He D; Cheng Y; Li L; Lu Z; Liang R; Fan Y; Qiao Y; Chou S Small; 2020 Mar; 16(11):e1906946. PubMed ID: 32068965 [TBL] [Abstract][Full Text] [Related]
15. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278 [TBL] [Abstract][Full Text] [Related]
16. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874 [TBL] [Abstract][Full Text] [Related]
17. Optimizing Mn in Prussian blue analogs with double redox active sites to induce boosted Zn Ye L; Fu H; Cao R; Yang J J Colloid Interface Sci; 2024 Jun; 664():423-432. PubMed ID: 38484511 [TBL] [Abstract][Full Text] [Related]
18. A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries. Li L; Hu Z; Lu Y; Wang C; Zhang Q; Zhao S; Peng J; Zhang K; Chou SL; Chen J Angew Chem Int Ed Engl; 2021 Jun; 60(23):13050-13056. PubMed ID: 33780584 [TBL] [Abstract][Full Text] [Related]
19. Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Liang Z; Tian F; Yang G; Wang C Nat Commun; 2023 Jun; 14(1):3591. PubMed ID: 37328496 [TBL] [Abstract][Full Text] [Related]
20. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg. Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202400214. PubMed ID: 38299760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]