These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38285718)

  • 1. Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator.
    Gallos IK; Lehmberg D; Dietrich F; Siettos C
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38285718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-series forecasting using manifold learning, radial basis function interpolation, and geometric harmonics.
    Papaioannou PG; Talmon R; Kevrekidis IG; Siettos C
    Chaos; 2022 Aug; 32(8):083113. PubMed ID: 36049932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended Dynamic Mode Decomposition with Invertible Dictionary Learning.
    Jin Y; Hou L; Zhong S
    Neural Netw; 2024 May; 173():106177. PubMed ID: 38382398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online Learning Koopman Operator for Closed-Loop Electrical Neurostimulation in Epilepsy.
    Liang Z; Luo Z; Liu K; Qiu J; Liu Q
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):492-503. PubMed ID: 36170412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
    Brunton SL; Brunton BW; Proctor JL; Kutz JN
    PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches.
    Ricardo Constante-Amores C; Linot AJ; Graham MD
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38572942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable learning method for feedforward neural networks using minimal-enclosing-ball approximation.
    Wang J; Deng Z; Luo X; Jiang Y; Wang S
    Neural Netw; 2016 Jun; 78():51-64. PubMed ID: 27049545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generalized diffusion frame for parsimonious representation of functions on data defined manifolds.
    Mhaskar HN
    Neural Netw; 2011 May; 24(4):345-59. PubMed ID: 21315554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing interpretability and generalizability of deep learning-based emulator in three-dimensional lake hydrodynamics using Koopman operator and transfer learning: Demonstrated on the example of lake Zurich.
    Tian W; Zhang Z; Bouffard D; Wu H; Xin K; Gu X; Liao Z
    Water Res; 2024 Feb; 249():120996. PubMed ID: 38103441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator.
    Bakhtiaridoust M; Yadegar M; Meskin N
    ISA Trans; 2023 Mar; 134():200-211. PubMed ID: 36127184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning emergent partial differential equations in a learned emergent space.
    Kemeth FP; Bertalan T; Thiem T; Dietrich F; Moon SJ; Laing CR; Kevrekidis IG
    Nat Commun; 2022 Jun; 13(1):3318. PubMed ID: 35680860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for Koopman Operator Optimal Control.
    Al-Gabalawy M
    ISA Trans; 2021 Jan; ():. PubMed ID: 33431116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TractLearn: A geodesic learning framework for quantitative analysis of brain bundles.
    Attyé A; Renard F; Baciu M; Roger E; Lamalle L; Dehail P; Cassoudesalle H; Calamante F
    Neuroimage; 2021 Jun; 233():117927. PubMed ID: 33689863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator.
    Klus S; Nüske F; Hamzi B
    Entropy (Basel); 2020 Jun; 22(7):. PubMed ID: 33286494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable invariant models via Koopman spectra.
    Konishi T; Kawahara Y
    Neural Netw; 2023 Aug; 165():393-405. PubMed ID: 37329783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning.
    Gibbons EK; Hodgson KK; Chaudhari AS; Richards LG; Majersik JJ; Adluru G; DiBella EVR
    Magn Reson Med; 2019 Apr; 81(4):2399-2411. PubMed ID: 30426558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.