These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38286017)

  • 1. A simulation study on the radiosensitization properties of gold nanorods.
    Taheri A; Khandaker MU; Moradi F; Bradley DA
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38286017
    [No Abstract]   [Full Text] [Related]  

  • 2. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
    Martinov MP; Thomson RM
    Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models.
    Engels E; Bakr S; Bolst D; Sakata D; Li N; Lazarakis P; McMahon SJ; Ivanchenko V; Rosenfeld AB; Incerti S; Kyriakou I; Emfietzoglou D; Lerch MLF; Tehei M; Corde S; Guatelli S
    Phys Med Biol; 2020 Nov; 65(22):225017. PubMed ID: 32916674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement.
    Byrne HL; Gholami Y; Kuncic Z
    Phys Med Biol; 2017 Apr; 62(8):3097-3110. PubMed ID: 28225353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation.
    Liu R; Zhao T; Zhao X; Reynoso FJ
    Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield.
    Peukert D; Kempson I; Douglass M; Bezak E
    Med Phys; 2020 Feb; 47(2):651-661. PubMed ID: 31725910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location.
    Lechtman E; Chattopadhyay N; Cai Z; Mashouf S; Reilly R; Pignol JP
    Phys Med Biol; 2011 Aug; 56(15):4631-47. PubMed ID: 21734337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating α(v)β₃ expression.
    Xu W; Luo T; Li P; Zhou C; Cui D; Pang B; Ren Q; Fu S
    Int J Nanomedicine; 2012; 7():915-24. PubMed ID: 22412298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of a transverse magnetic field on the dose enhancement of nanoparticles in a proton beam: a Monte Carlo simulation.
    Parishan M; Faghihi R; Kadoya N; Jingu K
    Phys Med Biol; 2020 Apr; 65(8):085002. PubMed ID: 32101796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization.
    Lechtman E; Pignol JP
    Sci Rep; 2017 Oct; 7(1):13268. PubMed ID: 29038517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of Gold Nanoparticle Radiosensitization on Functionalizing Layer Thickness.
    Spaas C; Dok R; Deschaume O; De Roo B; Vervaele M; Seo JW; Bartic C; Hoet P; Van den Heuvel F; Nuyts S; Locquet JP
    Radiat Res; 2016 Apr; 185(4):384-92. PubMed ID: 26950059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement.
    Cho J; Gonzalez-Lepera C; Manohar N; Kerr M; Krishnan S; Cho SH
    Phys Med Biol; 2016 Mar; 61(6):2562-81. PubMed ID: 26952844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Gold Nanoparticle Radiosensitization on Plasmid DNA Damage Induced by High-Dose-Rate Brachytherapy.
    Yogo K; Misawa M; Shimizu M; Shimizu H; Kitagawa T; Hirayama R; Ishiyama H; Furukawa T; Yasuda H
    Int J Nanomedicine; 2021; 16():359-370. PubMed ID: 33469290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size Dependence of Gold Nanorods for Efficient and Rapid Photothermal Therapy.
    Zhou W; Yao Y; Qin H; Xing X; Li Z; Ouyang M; Fan H
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons.
    Lin Y; Paganetti H; McMahon SJ; Schuemann J
    Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons.
    Zheng Y; Hunting DJ; Ayotte P; Sanche L
    Radiat Res; 2008 Jan; 169(1):19-27. PubMed ID: 18159957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization.
    Koger B; Kirkby C
    Phys Med Biol; 2017 Oct; 62(21):8455-8469. PubMed ID: 28933351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation study of gold nanoparticles localisation effects on radiation enhancement at the mitochondrion scale.
    Francis Z; Montarou G; Incerti S; Bernal M; Zein SA
    Phys Med; 2019 Nov; 67():148-154. PubMed ID: 31707141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons.
    Zheng Y; Sanche L
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.