These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38286079)

  • 41. Impact of commonly used Ag-Cu ion doses on Desulfovibrio sp.: growth and microbiologically induced corrosion against stainless steel.
    Arkan-Ozdemir S; Cansever N; Ilhan-Sungur E
    Water Sci Technol; 2020 Sep; 82(5):940-953. PubMed ID: 33031072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil.
    Liu B; Li Z; Yang X; Du C; Li X
    Bioelectrochemistry; 2020 Oct; 135():107551. PubMed ID: 32470907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accelerated role of exogenous riboflavin in selective Desulfovibrio desulfuricans corrosion of pipeline welded joints.
    Wang Q; Zhou X; Wang B; Liu M; Li C; Tan Z; Wu T
    Bioelectrochemistry; 2023 Oct; 153():108469. PubMed ID: 37235890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers.
    Permeh S; Lau K; Duncan M
    Bioelectrochemistry; 2021 Dec; 142():107922. PubMed ID: 34392136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of carbon steel ball bearings to determine the effect of biocides and corrosion inhibitors on microbiologically influenced corrosion under flow conditions.
    Pinnock T; Voordouw J; Voordouw G
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5741-5751. PubMed ID: 29749561
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy.
    Giorgi-Pérez AM; Arboleda-Ordoñez AM; Villamizar-Suárez W; Cardeñosa-Mendoza M; Jaimes-Prada R; Rincón-Orozco B; Niño-Gómez ME
    Bioelectrochemistry; 2021 Oct; 141():107868. PubMed ID: 34126368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical property degradation of X80 pipeline steel due to microbiologically influenced corrosion caused by
    Li Z; Yang J; Guo H; Kumseranee S; Punpruk S; Mohamed ME; Saleh MA; Gu T
    Front Bioeng Biotechnol; 2022; 10():1028462. PubMed ID: 36420439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superwettable surfaces and factors impacting microbial adherence in microbiologically-influenced corrosion: a review.
    Rane D; Kerkar S; Ramanan SR; Kowshik M
    World J Microbiol Biotechnol; 2024 Feb; 40(3):98. PubMed ID: 38353843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm.
    Li Z; Huang L; Hao W; Yang J; Qian H; Zhang D
    Bioelectrochemistry; 2022 Aug; 146():108130. PubMed ID: 35397438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biofilms and beyond: a comprehensive review of the impact of Sulphate Reducing Bacteria on steel corrosion.
    Y G A; Mulky L
    Biofouling; 2023; 39(9-10):897-915. PubMed ID: 38073525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline.
    Su H; Tang R; Peng X; Gao A; Han Y
    Bioelectrochemistry; 2020 Apr; 132():107406. PubMed ID: 31812086
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.
    Spark AJ; Law DW; Ward LP; Cole IS; Best AS
    Environ Sci Technol; 2017 Aug; 51(15):8501-8509. PubMed ID: 28633523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase.
    Xu L; Ivanova SA; Gu T
    Bioelectrochemistry; 2023 Dec; 154():108508. PubMed ID: 37451042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nutrient Level Determines Biofilm Characteristics and Subsequent Impact on Microbial Corrosion and Biocide Effectiveness.
    Salgar-Chaparro SJ; Lepkova K; Pojtanabuntoeng T; Darwin A; Machuca LL
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31980429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: a case study on crude oil sample.
    Mohd Ali MKFB; Abu Bakar A; Md Noor N; Yahaya N; Ismail M; Rashid AS
    Environ Technol; 2017 Oct; 38(19):2427-2439. PubMed ID: 27875932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of Ag-Cu ions on natural biofilms of variable ages: Evaluation of MIC.
    Unsal T; Cansever N; Ilhan-Sungur E
    Bioelectrochemistry; 2022 Aug; 146():108143. PubMed ID: 35504228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitigation of Desulfovibrio ferrophilus IS5 degradation of X80 carbon steel mechanical properties using a green biocide.
    Li Z; Yang J; Lu S; Dou W; Gu T
    Biodegradation; 2024 Jul; 35(4):439-449. PubMed ID: 38261083
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbiologically Influenced Corrosion Behavior of Carbon Steel in the Presence of Marine Bacteria
    Cai D; Wu J; Chai K
    ACS Omega; 2021 Feb; 6(5):3780-3790. PubMed ID: 33585757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.