These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38286255)
1. Weak and strong phase response curves of the onion fly circadian clock at temperature changes of 1 °C and 4 °C. Miyazaki Y; Tanaka K; Watari Y J Insect Physiol; 2024 May; 154():104618. PubMed ID: 38286255 [TBL] [Abstract][Full Text] [Related]
2. Temperature cycle amplitude alters the adult eclosion time and expression pattern of the circadian clock gene period in the onion fly. Miyazaki Y; Watari Y; Tanaka K; Goto SG J Insect Physiol; 2016 Mar; 86():54-9. PubMed ID: 26776097 [TBL] [Abstract][Full Text] [Related]
3. Adult eclosion timing of the onion fly, Delia antiqua, in response to daily cycles of temperature at different soil depths. Tanaka K; Watari Y Naturwissenschaften; 2003 Feb; 90(2):76-9. PubMed ID: 12590302 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change of rhythmicity. Watari Y J Insect Physiol; 2005 Jan; 51(1):11-6. PubMed ID: 15686641 [TBL] [Abstract][Full Text] [Related]
5. Interacting effect of thermoperiod and photoperiod on the eclosion rhythm in the onion fly, Delia antiqua supports the two-oscillator model. Watari Y; Tanaka K J Insect Physiol; 2010 Sep; 56(9):1192-7. PubMed ID: 20346949 [TBL] [Abstract][Full Text] [Related]
6. Day-to-day variations in the amplitude of the soil temperature cycle and impact on adult eclosion timing of the onion fly. Tanaka K; Watari Y Int J Biometeorol; 2017 Jun; 61(6):1011-1016. PubMed ID: 27921173 [TBL] [Abstract][Full Text] [Related]
7. Thermoperiodic regulation of the circadian eclosion rhythm in the flesh fly, Sarcophaga crassipalpis. Miyazaki Y; Goto SG; Tanaka K; Saito O; Watari Y J Insect Physiol; 2011 Sep; 57(9):1249-58. PubMed ID: 21704630 [TBL] [Abstract][Full Text] [Related]
8. The onion fly modulates the adult eclosion time in response to amplitude of temperature cycle. Tanaka K; Watari Y Naturwissenschaften; 2011 Aug; 98(8):711-5. PubMed ID: 21710241 [TBL] [Abstract][Full Text] [Related]
9. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Rensing L; Ruoff P Chronobiol Int; 2002 Sep; 19(5):807-64. PubMed ID: 12405549 [TBL] [Abstract][Full Text] [Related]
10. Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature. Varma V; Mukherjee N; Kannan NN; Sharma VK J Biol Rhythms; 2013 Dec; 28(6):380-9. PubMed ID: 24336416 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the effect of thermoperiod. Watari Y J Insect Physiol; 2002 Sep; 48(9):881-886. PubMed ID: 12770050 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua. Watari Y J Insect Physiol; 2002 Jan; 48(1):83-89. PubMed ID: 12770135 [TBL] [Abstract][Full Text] [Related]
13. Clock and Hormonal Controls of an Eclosion Gate in the Flesh Fly Sarcophaga crassipalpis. Yamamoto M; Nishimura K; Shiga S Zoolog Sci; 2017 Apr; 34(2):151-160. PubMed ID: 28397606 [TBL] [Abstract][Full Text] [Related]
14. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker. Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336 [TBL] [Abstract][Full Text] [Related]
16. The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. Vitaterna MH; Ko CH; Chang AM; Buhr ED; Fruechte EM; Schook A; Antoch MP; Turek FW; Takahashi JS Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9327-32. PubMed ID: 16754844 [TBL] [Abstract][Full Text] [Related]
17. Temperature Entrainment of Circadian Locomotor and Transcriptional Rhythms in the Cricket, Kannan NN; Tomiyama Y; Nose M; Tokuoka A; Tomioka K Zoolog Sci; 2019 Apr; 36(2):95-104. PubMed ID: 31120643 [TBL] [Abstract][Full Text] [Related]
18. Unstable Phase Response Curves Shown by Spatiotemporal Patterns in the Plant Root Circadian Clock. Masuda K; Fukuda H J Biol Rhythms; 2021 Oct; 36(5):432-441. PubMed ID: 34313451 [TBL] [Abstract][Full Text] [Related]
19. Effects of photoperiod and aging on locomotor activity rhythms in the onion fly, Delia antiqua. Arai T; Watari Y J Insect Physiol; 1997 Jun; 43(6):567-576. PubMed ID: 12770419 [TBL] [Abstract][Full Text] [Related]
20. Selection for Timing of Eclosion Results in Co-evolution of Temperature Responsiveness in Abhilash L; Ghosh A; Sheeba V J Biol Rhythms; 2019 Dec; 34(6):596-609. PubMed ID: 31608742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]