These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38286379)
1. Collagen/functionalized cellulose nanofibril composite aerogels with pH-responsive characteristics for drug delivery system. Yue C; Ding C; Hu M; Zhang R; Cheng B Int J Biol Macromol; 2024 Mar; 261(Pt 1):129650. PubMed ID: 38286379 [TBL] [Abstract][Full Text] [Related]
2. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. Zhao J; Lu C; He X; Zhang X; Zhang W; Zhang X ACS Appl Mater Interfaces; 2015 Feb; 7(4):2607-15. PubMed ID: 25562313 [TBL] [Abstract][Full Text] [Related]
3. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Fu J; Wang S; He C; Lu Z; Huang J; Chen Z Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912 [TBL] [Abstract][Full Text] [Related]
4. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels. Mulyadi A; Zhang Z; Deng Y ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377 [TBL] [Abstract][Full Text] [Related]
5. Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils. Erlandsson J; Françon H; Marais A; Granberg H; Wågberg L Biomacromolecules; 2019 Feb; 20(2):728-737. PubMed ID: 30394086 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of bamboo shoot cellulose/sodium alginate composite aerogels for sustained release of curcumin. Zhang A; Zou Y; Xi Y; Wang P; Zhang Y; Wu L; Zhang H Int J Biol Macromol; 2021 Dec; 192():904-912. PubMed ID: 34662653 [TBL] [Abstract][Full Text] [Related]
7. Contact-active antibacterial aerogels from cellulose nanofibrils. Henschen J; Illergård J; Larsson PA; Ek M; Wågberg L Colloids Surf B Biointerfaces; 2016 Oct; 146():415-22. PubMed ID: 27391038 [TBL] [Abstract][Full Text] [Related]
8. Flexible and Sensitivity-Adjustable Pressure Sensors Based on Carbonized Bacterial Nanocellulose/Wood-Derived Cellulose Nanofibril Composite Aerogels. Chen S; Chen Y; Li D; Xu Y; Xu F ACS Appl Mater Interfaces; 2021 Feb; 13(7):8754-8763. PubMed ID: 33590754 [TBL] [Abstract][Full Text] [Related]
9. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin. Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527 [TBL] [Abstract][Full Text] [Related]
10. Cellulose nanofibers aerogels functionalized with AgO: Preparation, characterization and antibacterial activity. Wang C; Liu W; Cao H; Jia L; Liu P Int J Biol Macromol; 2022 Jan; 194():58-65. PubMed ID: 34863833 [TBL] [Abstract][Full Text] [Related]
11. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770 [TBL] [Abstract][Full Text] [Related]
12. Di-aldehyde tunicate cellulose nanocrystal (D-tCNC) aerogels for drug delivery: Effect of D-tCNC composition on aerogel structure and release properties. Xu D; Cheng Y; Lin W; Han S; Wu S; Mondal AK; Li A; Huang F Int J Biol Macromol; 2024 Jan; 256(Pt 1):128345. PubMed ID: 38007011 [TBL] [Abstract][Full Text] [Related]
13. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Liu S; Yan Q; Tao D; Yu T; Liu X Carbohydr Polym; 2012 Jun; 89(2):551-7. PubMed ID: 24750757 [TBL] [Abstract][Full Text] [Related]
14. Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment. Liu Q; Liu Y; Feng Q; Chen C; Xu Z J Hazard Mater; 2023 Jan; 441():129965. PubMed ID: 36122524 [TBL] [Abstract][Full Text] [Related]
15. Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment. Sivaraman D; Siqueira G; Maurya AK; Zhao S; Koebel MM; Nyström G; Lattuada M; Malfait WJ Carbohydr Polym; 2022 Sep; 292():119675. PubMed ID: 35725170 [TBL] [Abstract][Full Text] [Related]
16. Rapid adsorption of directional cellulose nanofibers/3-glycidoxypropyltrimethoxysilane/polyethyleneimine aerogels on microplastics in water. Zhuang J; Pan M; Zhang Y; Liu F; Xu Z Int J Biol Macromol; 2023 Apr; 235():123884. PubMed ID: 36870642 [TBL] [Abstract][Full Text] [Related]
17. Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying. Darpentigny C; Nonglaton G; Bras J; Jean B Carbohydr Polym; 2020 Feb; 229():115560. PubMed ID: 31826439 [TBL] [Abstract][Full Text] [Related]
18. Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Plappert SF; Nedelec JM; Rennhofer H; Lichtenegger HC; Bernstorff S; Liebner FW Biomacromolecules; 2018 Nov; 19(11):4411-4422. PubMed ID: 30252450 [TBL] [Abstract][Full Text] [Related]
19. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Valo H; Arola S; Laaksonen P; Torkkeli M; Peltonen L; Linder MB; Serimaa R; Kuga S; Hirvonen J; Laaksonen T Eur J Pharm Sci; 2013 Sep; 50(1):69-77. PubMed ID: 23500041 [TBL] [Abstract][Full Text] [Related]
20. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Bhandari J; Mishra H; Mishra PK; Wimmer R; Ahmad FJ; Talegaonkar S Int J Nanomedicine; 2017; 12():2021-2031. PubMed ID: 28352172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]