These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Interfacial Engineering of Leaf-like Bimetallic MOF-Based Co@NC Nanoarrays Coupled with Ultrathin CoFe-LDH Nanosheets for Rechargeable and Flexible Zn-Air Batteries. Ma J; Liu L; Chen Z; Wang M; Wu H; Wang H; Yuan D; Ning X Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772037 [TBL] [Abstract][Full Text] [Related]
4. Architecting N-doped Carbon Nanotube-Rich Carbon Nanofibers with Biomimetic Vine-Leaf-Whisker Structure as Robust Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. Wang M; Chen Z; Song Y; Hu Z; Song H; Dong S; Yuan D Inorg Chem; 2024 Mar; 63(9):4373-4384. PubMed ID: 38376825 [TBL] [Abstract][Full Text] [Related]
5. Designing High-Quality Electrocatalysts Based on CoO:MnO Zamani-Meymian MR; Khanmohammadi Chenab K; Pourzolfaghar H ACS Appl Mater Interfaces; 2022 Dec; 14(50):55594-55607. PubMed ID: 36475585 [TBL] [Abstract][Full Text] [Related]
6. FeCo/N-co-doped 3D carbon nanofibers as efficient bifunctional oxygen electrocatalyst for Zn-air batteries. Wang J; Zhang Y; Guo X; Liao S; Lv P; Wei Q Nanoscale; 2023 Jan; 15(2):625-630. PubMed ID: 36504045 [TBL] [Abstract][Full Text] [Related]
7. Coupling MnS and CoS Nanocrystals on Self-Supported Porous N-doped Carbon Nanofibers to Enhance Oxygen Electrocatalytic Performance for Flexible Zn-Air Batteries. Shi X; Du J; Jia L; Gong Y; Jin J; Wang H; Wang R; Zhao L; He B ACS Appl Mater Interfaces; 2023 Jun; 15(22):26766-26777. PubMed ID: 37246583 [TBL] [Abstract][Full Text] [Related]
8. Engineering Two-Phase Bifunctional Oxygen Electrocatalysts with Tunable and Synergetic Components for Flexible Zn-Air Batteries. Niu Y; Teng X; Gong S; Xu M; Sun SG; Chen Z Nanomicro Lett; 2021 May; 13(1):126. PubMed ID: 34138326 [TBL] [Abstract][Full Text] [Related]
9. In Situ Coupling of Strung Co4N and Intertwined N-C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn-Air Batteries. Meng F; Zhong H; Bao D; Yan J; Zhang X J Am Chem Soc; 2016 Aug; 138(32):10226-31. PubMed ID: 27463122 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Zinc-Air Batteries Based on Bifunctional Hierarchically Porous Nitrogen-Doped Carbon. Gui F; Jin Q; Xiao D; Xu X; Tan Q; Yang D; Li B; Ming P; Zhang C; Chen Z; Siahrostami S; Xiao Q Small; 2022 Feb; 18(8):e2105928. PubMed ID: 34894096 [TBL] [Abstract][Full Text] [Related]
11. MOF-derived low Ru-loaded high entropy alloy as an efficient and durable self-supporting electrode in rechargeable liquid/flexible Zn-air batteries. Hu Z; Geng Q; Dong S; Wang M; Song Y; Sun W; Diao H; Yuan D J Colloid Interface Sci; 2024 Oct; 671():34-45. PubMed ID: 38788422 [TBL] [Abstract][Full Text] [Related]
12. In-Situ Nanoarchitectonics of Fe/Co LDH over Cobalt-Enriched N-Doped Carbon Cookies as Facile Oxygen Redox Electrocatalysts for High-Rate Rechargeable Zinc-Air Batteries. Allwyn N; Gokulnath S; Sathish M ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38619401 [TBL] [Abstract][Full Text] [Related]
13. 3D Spatial Combination of CN Vacancy-Mediated NiFe-PBA with N-Doped Carbon Nanofibers Network Toward Free-Standing Bifunctional Electrode for Zn-Air Batteries. Lai C; Li H; Sheng Y; Zhou M; Wang W; Gong M; Wang K; Jiang K Adv Sci (Weinh); 2022 Apr; 9(11):e2105925. PubMed ID: 35191617 [TBL] [Abstract][Full Text] [Related]
14. CoFe Alloys Dispersed on Se, N Co-Doped Graphitic Carbon as Efficient Bifunctional Catalysts for Zn-Air Batteries. Dai L; Feng C; Luo Y; Wan J; Sun Y; Zheng Y; Zhang H; Wang Y Chemistry; 2024 Jan; 30(2):e202303173. PubMed ID: 37880198 [TBL] [Abstract][Full Text] [Related]
15. Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co Zhao H; Yao H; Wang S; Cao Y; Lu Z; Xie J; Hu J; Hao A J Colloid Interface Sci; 2022 Nov; 626():475-485. PubMed ID: 35803146 [TBL] [Abstract][Full Text] [Related]
16. Wood-Derived Bimetallic and Heteroatomic Hierarchically Porous Carbon Aerogel for Rechargeable Flow Zn-Air Batteries. Pang H; Sun P; Gong H; Zhang N; Cao J; Zhang R; Luo M; Li Y; Sun G; Li Y; Deng J; Gao M; Wang M; Kong B ACS Appl Mater Interfaces; 2021 Aug; 13(33):39458-39469. PubMed ID: 34433254 [TBL] [Abstract][Full Text] [Related]
17. Atomic layer deposited nickel sulfide for bifunctional oxygen evolution/reduction electrocatalysis and zinc-air batteries. Yan S; Li H; Zhu J; Xiong W; Lei R; Wang X Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33770782 [TBL] [Abstract][Full Text] [Related]
18. Synergistic enhancement of Zn-air battery performance via integration of Ni-doped cobalt sulfide nanoparticles within N, S-doped carbon matrix. Kim H; Min K; Kwon K; Eun Shim S; Baeck SH J Colloid Interface Sci; 2024 Dec; 675():104-116. PubMed ID: 38968631 [TBL] [Abstract][Full Text] [Related]
19. Bimetallic Organic Framework-Decorated Leaf-like 2D Nanosheets as Flexible Air Cathode for Rechargeable Zn-air Batteries. Li J; Huang S; Li Z; Zhao X; Ouyang B; Kan E; Zhao J; Zhang W Chemistry; 2023 Feb; 29(8):e202202992. PubMed ID: 36349874 [TBL] [Abstract][Full Text] [Related]
20. Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn-air batteries. Shinde SS; Yu JY; Song JW; Nam YH; Kim DH; Lee JH Nanoscale Horiz; 2017 Nov; 2(6):333-341. PubMed ID: 32260663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]