These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 38286829)
1. Aneuploidy and complex genomic rearrangements in cancer evolution. Baker TM; Waise S; Tarabichi M; Van Loo P Nat Cancer; 2024 Feb; 5(2):228-239. PubMed ID: 38286829 [TBL] [Abstract][Full Text] [Related]
2. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mazzagatti A; Engel JL; Ly P Mol Cell; 2024 Jan; 84(1):55-69. PubMed ID: 38029753 [TBL] [Abstract][Full Text] [Related]
3. Prevalence and clinical implications of chromothripsis in cancer genomes. Kloosterman WP; Koster J; Molenaar JJ Curr Opin Oncol; 2014 Jan; 26(1):64-72. PubMed ID: 24305569 [TBL] [Abstract][Full Text] [Related]
4. The Genomic Characteristics and Origin of Chromothripsis. Marcozzi A; Pellestor F; Kloosterman WP Methods Mol Biol; 2018; 1769():3-19. PubMed ID: 29564814 [TBL] [Abstract][Full Text] [Related]
5. Chromothripsis and cancer: causes and consequences of chromosome shattering. Forment JV; Kaidi A; Jackson SP Nat Rev Cancer; 2012 Oct; 12(10):663-70. PubMed ID: 22972457 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic origins of diverse genome rearrangements in cancer. Dahiya R; Hu Q; Ly P Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062 [TBL] [Abstract][Full Text] [Related]
7. Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements. Keuper K; Wieland A; Räschle M; Storchova Z DNA Repair (Amst); 2021 Nov; 107():103207. PubMed ID: 34425515 [TBL] [Abstract][Full Text] [Related]
8. Chromothripsis in congenital disorders and cancer: similarities and differences. Kloosterman WP; Cuppen E Curr Opin Cell Biol; 2013 Jun; 25(3):341-8. PubMed ID: 23478216 [TBL] [Abstract][Full Text] [Related]
9. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Fukami M; Shima H; Suzuki E; Ogata T; Matsubara K; Kamimaki T Clin Genet; 2017 May; 91(5):653-660. PubMed ID: 27888607 [TBL] [Abstract][Full Text] [Related]
10. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Kloosterman WP; Hoogstraat M; Paling O; Tavakoli-Yaraki M; Renkens I; Vermaat JS; van Roosmalen MJ; van Lieshout S; Nijman IJ; Roessingh W; van 't Slot R; van de Belt J; Guryev V; Koudijs M; Voest E; Cuppen E Genome Biol; 2011 Oct; 12(10):R103. PubMed ID: 22014273 [TBL] [Abstract][Full Text] [Related]
11. A cell-based model system links chromothripsis with hyperploidy. Mardin BR; Drainas AP; Waszak SM; Weischenfeldt J; Isokane M; Stütz AM; Raeder B; Efthymiopoulos T; Buccitelli C; Segura-Wang M; Northcott P; Pfister SM; Lichter P; Ellenberg J; Korbel JO Mol Syst Biol; 2015 Sep; 11(9):828. PubMed ID: 26415501 [TBL] [Abstract][Full Text] [Related]
12. Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. Cai H; Kumar N; Bagheri HC; von Mering C; Robinson MD; Baudis M BMC Genomics; 2014 Jan; 15():82. PubMed ID: 24476156 [TBL] [Abstract][Full Text] [Related]
13. Chromoanagenesis, the mechanisms of a genomic chaos. Pellestor F; Gaillard JB; Schneider A; Puechberty J; Gatinois V Semin Cell Dev Biol; 2022 Mar; 123():90-99. PubMed ID: 33608210 [TBL] [Abstract][Full Text] [Related]
14. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Krupina K; Goginashvili A; Cleveland DW Nat Rev Genet; 2024 Mar; 25(3):196-210. PubMed ID: 37938738 [TBL] [Abstract][Full Text] [Related]
15. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Zhang CZ; Leibowitz ML; Pellman D Genes Dev; 2013 Dec; 27(23):2513-30. PubMed ID: 24298051 [TBL] [Abstract][Full Text] [Related]
16. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Terzoudi GI; Karakosta M; Pantelias A; Hatzi VI; Karachristou I; Pantelias G Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():185-98. PubMed ID: 26520389 [TBL] [Abstract][Full Text] [Related]
17. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Ly P; Brunner SF; Shoshani O; Kim DH; Lan W; Pyntikova T; Flanagan AM; Behjati S; Page DC; Campbell PJ; Cleveland DW Nat Genet; 2019 Apr; 51(4):705-715. PubMed ID: 30833795 [TBL] [Abstract][Full Text] [Related]
18. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Holland AJ; Cleveland DW Nat Med; 2012 Nov; 18(11):1630-8. PubMed ID: 23135524 [TBL] [Abstract][Full Text] [Related]
19. The genomic characteristics and cellular origin of chromothripsis. Storchová Z; Kloosterman WP Curr Opin Cell Biol; 2016 Jun; 40():106-113. PubMed ID: 27023493 [TBL] [Abstract][Full Text] [Related]
20. Cancer cells preferentially lose small chromosomes. Duijf PH; Schultz N; Benezra R Int J Cancer; 2013 May; 132(10):2316-26. PubMed ID: 23124507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]