These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38286879)

  • 21. Sugars and Jasmonic Acid Concentration in Root Exudates Affect Maize Rhizosphere Bacterial Communities.
    Lopes LD; Wang P; Futrell SL; Schachtman DP
    Appl Environ Microbiol; 2022 Sep; 88(18):e0097122. PubMed ID: 36073926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress.
    Oppenheimer-Shaanan Y; Jakoby G; Starr ML; Karliner R; Eilon G; Itkin M; Malitsky S; Klein T
    Elife; 2022 Jul; 11():. PubMed ID: 35858113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment.
    Chaudhry Q; Blom-Zandstra M; Gupta S; Joner EJ
    Environ Sci Pollut Res Int; 2005; 12(1):34-48. PubMed ID: 15768739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil.
    Sun TR; Cang L; Wang QY; Zhou DM; Cheng JM; Xu H
    J Hazard Mater; 2010 Apr; 176(1-3):919-25. PubMed ID: 20005625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of crude oil in the rhizosphere of Sorghum bicolor.
    Banks MK; Kulakow P; Schwab AP; Chen Z; Rathbone K
    Int J Phytoremediation; 2003; 5(3):225-34. PubMed ID: 14750430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response and adaptation of rhizosphere microbiome to organic pollutants with enriching pollutant-degraders and genes for bioremediation: A critical review.
    Lü H; Tang GX; Huang YH; Mo CH; Zhao HM; Xiang L; Li YW; Li H; Cai QY; Li QX
    Sci Total Environ; 2024 Feb; 912():169425. PubMed ID: 38128666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium.
    Maqbool F; Wang Z; Xu Y; Zhao J; Gao D; Zhao YG; Bhatti ZA; Xing B
    J Hazard Mater; 2012 Oct; 237-238():262-9. PubMed ID: 22975255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil.
    Kotoky R; Rajkumari J; Pandey P
    J Environ Manage; 2018 Jul; 217():858-870. PubMed ID: 29660711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of Root Exudates on the Soil Microbial Diversity and Biogeochemistry of Heavy Metals.
    Agarwal P; Vibhandik R; Agrahari R; Daverey A; Rani R
    Appl Biochem Biotechnol; 2024 May; 196(5):2673-2693. PubMed ID: 37191824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Remediation of petroleum contaminated soils through composting and rhizosphere degradation.
    Wang Z; Xu Y; Zhao J; Li F; Gao D; Xing B
    J Hazard Mater; 2011 Jun; 190(1-3):677-85. PubMed ID: 21524845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ryegrass on biodegradation of hydrocarbons in soil.
    Günther T; Dornberger U; Fritsche W
    Chemosphere; 1996 Jul; 33(2):203-15. PubMed ID: 8696773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence.
    Wang J; Liao L; Wang G; Liu H; Wu Y; Liu G; Zhang C
    Sci Total Environ; 2022 Jan; 804():150148. PubMed ID: 34520919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A combined landfarming-phytoremediation method to enhance remediation of mixed persistent contaminants.
    Tehrani MRF; Besalatpour AA
    Environ Sci Pollut Res Int; 2024 May; 31(25):37163-37174. PubMed ID: 38767793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses and roles of roots, microbes, and degrading genes in rhizosphere during phytoremediation of petroleum hydrocarbons contaminated soil.
    Cheng L; Zhou Q; Yu B
    Int J Phytoremediation; 2019; 21(12):1161-1169. PubMed ID: 31099253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exudates from Miscanthus x giganteus change the response of a root-associated Pseudomonas putida strain towards heavy metals.
    Zadel U; Cruzeiro C; Raj Durai AC; Nesme J; May R; Balázs H; Michalke B; Płaza G; Schröder P; Schloter M; Radl V
    Environ Pollut; 2022 Nov; 313():119989. PubMed ID: 36028079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of plant root exudates on the desorption of hexachlorocyclohexane isomers from contaminated soils.
    Rodríguez-Garrido B; Balseiro-Romero M; Kidd PS; Monterroso C
    Chemosphere; 2020 Feb; 241():124920. PubMed ID: 31605992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Root exudates: from plant to rhizosphere and beyond.
    Vives-Peris V; de Ollas C; Gómez-Cadenas A; Pérez-Clemente RM
    Plant Cell Rep; 2020 Jan; 39(1):3-17. PubMed ID: 31346716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissipation gradients of phenanthrene and pyrene in the Rice rhizosphere.
    Gao Y; Wu SC; Yu XZ; Wong MH
    Environ Pollut; 2010 Aug; 158(8):2596-603. PubMed ID: 20542360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Rhizosphere enhanced remediation of petroleum contaminated soil].
    Lu M; Zhang ZZ; Sun SS; Qiao W; Liu X
    Huan Jing Ke Xue; 2009 Dec; 30(12):3703-9. PubMed ID: 20187410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Root exudates impact plant performance under abiotic stress.
    Chai YN; Schachtman DP
    Trends Plant Sci; 2022 Jan; 27(1):80-91. PubMed ID: 34481715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.