BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38286983)

  • 21. Identification of a Druggable Pathway Controlling Glioblastoma Invasiveness.
    Pencheva N; de Gooijer MC; Vis DJ; Wessels LFA; Würdinger T; van Tellingen O; Bernards R
    Cell Rep; 2017 Jul; 20(1):48-60. PubMed ID: 28683323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Runt-related transcription factor 1 is required for murine osteoblast differentiation and bone formation.
    Tang J; Xie J; Chen W; Tang C; Wu J; Wang Y; Zhou XD; Zhou HD; Li YP
    J Biol Chem; 2020 Aug; 295(33):11669-11681. PubMed ID: 32571873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models.
    Pencovich N; Jaschek R; Tanay A; Groner Y
    Blood; 2011 Jan; 117(1):e1-14. PubMed ID: 20959602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding.
    Ptasinska A; Assi SA; Mannari D; James SR; Williamson D; Dunne J; Hoogenkamp M; Wu M; Care M; McNeill H; Cauchy P; Cullen M; Tooze RM; Tenen DG; Young BD; Cockerill PN; Westhead DR; Heidenreich O; Bonifer C
    Leukemia; 2012 Aug; 26(8):1829-41. PubMed ID: 22343733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RUNX1 Regulates Migration, Invasion, and Angiogenesis via p38 MAPK Pathway in Human Glioblastoma.
    Sangpairoj K; Vivithanaporn P; Apisawetakan S; Chongthammakun S; Sobhon P; Chaithirayanon K
    Cell Mol Neurobiol; 2017 Oct; 37(7):1243-1255. PubMed ID: 28012022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha.
    Peng ZG; Zhou MY; Huang Y; Qiu JH; Wang LS; Liao SH; Dong S; Chen GQ
    Oncogene; 2008 Jan; 27(6):839-47. PubMed ID: 17684492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional Auto-Regulation of RUNX1 P1 Promoter.
    Martinez M; Hinojosa M; Trombly D; Morin V; Stein J; Stein G; Javed A; Gutierrez SE
    PLoS One; 2016; 11(2):e0149119. PubMed ID: 26901859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations.
    Huang G; Zhao X; Wang L; Elf S; Xu H; Zhao X; Sashida G; Zhang Y; Liu Y; Lee J; Menendez S; Yang Y; Yan X; Zhang P; Tenen DG; Osato M; Hsieh JJ; Nimer SD
    Blood; 2011 Dec; 118(25):6544-52. PubMed ID: 22012064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Runx1 is a co-activator with FOXO3 to mediate transforming growth factor beta (TGFbeta)-induced Bim transcription in hepatic cells.
    Wildey GM; Howe PH
    J Biol Chem; 2009 Jul; 284(30):20227-39. PubMed ID: 19494111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinformatics analysis of downstream circRNAs and miRNAs regulated by Runt-related transcription factor 1 in papillary thyroid carcinoma.
    Xu J; Zheng G; Guo H; Meng K; Zhang W; He R; Zheng C; Ge M
    Gland Surg; 2022 May; 11(5):868-881. PubMed ID: 35694090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct gene expression pattern of RUNX1 mutations coordinated by target repression and promoter hypermethylation in acute myeloid leukemia.
    Li J; Jin W; Tan Y; Wang B; Wang X; Zhao M; Wang K
    Front Med; 2022 Aug; 16(4):627-636. PubMed ID: 34958450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts.
    Wan X; Guan S; Hou Y; Qin Y; Zeng H; Yang L; Qiao Y; Liu S; Li Q; Jin T; Qiu Y; Liu M
    Theranostics; 2021; 11(10):4975-4991. PubMed ID: 33754039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel mechanism for OSM-promoted extracellular matrix remodeling in breast cancer: LOXL2 upregulation and subsequent ECM alignment.
    Dinca SC; Greiner D; Weidenfeld K; Bond L; Barkan D; Jorcyk CL
    Breast Cancer Res; 2021 May; 23(1):56. PubMed ID: 34011405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment.
    Tejero R; Huang Y; Katsyv I; Kluge M; Lin JY; Tome-Garcia J; Daviaud N; Wang Y; Zhang B; Tsankova NM; Friedel CC; Zou H; Friedel RH
    EBioMedicine; 2019 Apr; 42():252-269. PubMed ID: 30952620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient hemogenic endothelial cell specification by RUNX1 is dependent on baseline chromatin accessibility of RUNX1-regulated TGFβ target genes.
    Howell ED; Yzaguirre AD; Gao P; Lis R; He B; Lakadamyali M; Rafii S; Tan K; Speck NA
    Genes Dev; 2021 Nov; 35(21-22):1475-1489. PubMed ID: 34675061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circ_0027599 elevates RUNX1 expression via sponging miR-21-5p on gastric cancer progression.
    Han J; Yang Z; Zhao S; Zheng L; Tian Y; Lv Y
    Eur J Clin Invest; 2021 Nov; 51(11):e13592. PubMed ID: 34032284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin accessibility uncovers KRAS-driven FOSL2 promoting pancreatic ductal adenocarcinoma progression through up-regulation of CCL28.
    Zhang S; Li P; Li J; Gao J; Qi Q; Dong G; Liu X; Jiao Q; Wang Y; Du L; Zhan H; Xu S; Wang C
    Br J Cancer; 2023 Aug; 129(3):426-443. PubMed ID: 37380804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibrinogen in the glioblastoma microenvironment contributes to the invasiveness of brain tumor-initiating cells.
    Dzikowski L; Mirzaei R; Sarkar S; Kumar M; Bose P; Bellail A; Hao C; Yong VW
    Brain Pathol; 2021 Sep; 31(5):e12947. PubMed ID: 33694259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of RUNX1 is associated with aggressive lung adenocarcinomas.
    Ramsey J; Butnor K; Peng Z; Leclair T; van der Velden J; Stein G; Lian J; Kinsey CM
    J Cell Physiol; 2018 Apr; 233(4):3487-3497. PubMed ID: 28926105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.